ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量化改進(jìn)模型的小麥白粉病檢測(cè)裝置研發(fā)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD2000103),、國(guó)家自然科學(xué)基金項(xiàng)目(31971785)和中國(guó)農(nóng)業(yè)大學(xué)教改項(xiàng)目(JG202026、QYJC202101,、JG202102,、BH2022176)


Development of Detector for Wheat Powdery Mildew Based on Lightweight Improved Deep Learning Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為快速、全面的監(jiān)測(cè)大田小麥病害,,并結(jié)合小麥發(fā)病特征實(shí)現(xiàn)對(duì)小麥不同生長(zhǎng)部位的病害進(jìn)行識(shí)別,,設(shè)計(jì)了一款便攜式小麥白粉病病害檢測(cè)裝置,其由雙相機(jī)采集模塊和主控模塊組成,,配合病害檢測(cè)軟件系統(tǒng)實(shí)現(xiàn)對(duì)小麥多部位的白粉病害采集與檢測(cè),。為保證模型在檢測(cè)裝置部署的可行性,提出了一種基于YOLO v7-tiny模型輕量化改進(jìn)的白粉病目標(biāo)檢測(cè)模型(YOLO v7tiny-ShuffleNet v1,,YT-SFNet),。為驗(yàn)證該輕量化模型的準(zhǔn)確率和檢測(cè)速度,與YOLO v7-tiny模型進(jìn)行訓(xùn)練對(duì)比,,結(jié)果表明YT-SFNet模型相較于YOLO v7-tiny在平均精度上提高了0.57個(gè)百分點(diǎn),;在檢測(cè)時(shí)間和模型內(nèi)存占用量上分別下降了2.4ms和3.2MB。 最后將輕量化模型和軟件系統(tǒng)移植至裝置主控模塊,,制作測(cè)試集對(duì)裝置的檢測(cè)準(zhǔn)確率和檢測(cè)速度進(jìn)行了性能測(cè)試,。其對(duì)于測(cè)試集的識(shí)別準(zhǔn)確率為86.2%,檢測(cè)速度上有較好的穩(wěn)定性,,且單幅病害圖像從處理,、檢測(cè)及顯示保存的全過(guò)程平均耗時(shí)為0.5079s。

    Abstract:

    Wheat diseases have frequently threatened the yield and quality of wheat production. In order to quickly and comprehensively monitor wheat diseases in the field and identify diseases in different growth parts of wheat based on the characteristics of wheat disease, a dual camera wheat disease detection device based on a lightweight model was designed. The device was composed of a dual camera acquisition module and a main control module, and it can collect and detect wheat powdery mildew at multiple locations in cooperation with the disease detection software system. In order to ensure the feasibility of the model deployment in the detection device, a lightweight improved powdery mildew target detection model based on YOLO v7-tiny model (YOLO v7tiny-ShuffleNet v1, YT-SFNet) was proposed. To verify the accuracy and detection speed of the lightweight model, it was trained and compared with the YOLO v7-tiny model. The results showed that the YT-SFNet model improved the average accuracy by 0.57 percentage points compared with YOLO v7-tiny model. The detection time and model size were decreased by 2.4ms and 3.2MB, respectively. Finally, the lightweight model and software system were transplanted to the main control module of the device, and a test set was created to test the performance of the devices detection accuracy and detection speed. Its recognition accuracy for the test set was 86.2%, with good stability in detection speed, and the average time spent on the entire process of processing, detecting, and displaying and saving a single disease image was 0.5079s.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李震,李佳盟,王楠,張?jiān)?孫紅,李民贊.基于輕量化改進(jìn)模型的小麥白粉病檢測(cè)裝置研發(fā)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s2):314-322. LI Zhen, LI Jiameng, WANG Nan, ZHANG Yuan, SUN Hong, LI Minzan. Development of Detector for Wheat Powdery Mildew Based on Lightweight Improved Deep Learning Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s2):314-322.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-28
  • 出版日期:
文章二維碼