ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合多光譜成像與深度學(xué)習(xí)的作物植株葉綠素檢測(cè)系統(tǒng)研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省重點(diǎn)研發(fā)計(jì)劃(重大科技創(chuàng)新工程)項(xiàng)目(2022CXGC020708-1)、國(guó)家自然科學(xué)基金項(xiàng)目(31971785)和中國(guó)農(nóng)業(yè)大學(xué)教改項(xiàng)目(JG202026,、QYJC202101,、JG202102、BH2022176)


Fusing Multispectral Imaging and Deep Learning in Plant Chlorophyll Index Detection System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了滿足田間作物長(zhǎng)勢(shì)快速檢測(cè)與指導(dǎo)變量管理的需求,,以玉米為例設(shè)計(jì)了基于多光譜成像的田間作物植株葉綠素檢測(cè)系統(tǒng),,包括可見光(RGB)和近紅外(Near-infrared, NIR)圖像采集模塊、主控處理器模塊,、模型加速模塊,、顯示及電源模塊,用于實(shí)現(xiàn)玉米植株智能識(shí)別與葉綠素指標(biāo)一體化檢測(cè),。首先,,采集玉米苗期和拔節(jié)期冠層圖像數(shù)據(jù)集,比較了植株冠層實(shí)例分割與株心目標(biāo)檢測(cè)兩種深度學(xué)習(xí)模型,,構(gòu)建了基于MobileDet+SSDLite(Single-shot multibox detector lite)輕量化網(wǎng)絡(luò)的玉米植株定位檢測(cè)模型,,實(shí)現(xiàn)玉米植株識(shí)別。其次,,提取被識(shí)別的植株株心RGB-NIR圖像,,開展RGB和NIR圖像匹配與分割,提取R,、G、B和NIR灰度值計(jì)算植被指數(shù),,使用SPXY算法(Sample set portioning based on joint X-Y distances)和連續(xù)投影算法(Successive projections algorithm,,SPA)分別對(duì)數(shù)據(jù)集進(jìn)行樣本劃分及特征變量篩選,選擇高斯過(guò)程回歸(Gaussian process regression,,GPR)算法建立葉綠素指標(biāo)檢測(cè)模型,。結(jié)果顯示,玉米株心目標(biāo)檢測(cè)模型在遮擋重疊的復(fù)雜環(huán)境下識(shí)別率達(dá)到88.7%,,在不交叉重疊時(shí)識(shí)別精度達(dá)到90%以上,;葉綠素含量指標(biāo)檢測(cè)模型建模集的模型決定系數(shù)R2為0.62,測(cè)試集模型決定系數(shù)R2為0.61,。對(duì)開發(fā)系統(tǒng)進(jìn)行田間測(cè)試,,結(jié)果顯示,,系統(tǒng)檢測(cè)速率可達(dá)14.6f/s,平均精度為92.9%,。研究結(jié)果能夠有效解決大田環(huán)境下玉米營(yíng)養(yǎng)狀態(tài)的檢測(cè)問(wèn)題,,滿足大田環(huán)境實(shí)時(shí)檢測(cè)需求,為作物生產(chǎn)智慧感知提供解決思路和技術(shù)支持,。

    Abstract:

    In order to meet the needs of rapid detection of field crop growth and guiding variable management, a field crop chlorophyll intelligent detection system based on multi-spectral imaging was designed and developed with maize as an example. It included visible light (RGB) and near-infrared (NIR) image acquisition module, main control processor module, model acceleration module, display and power module, which was used to realize intelligent identification of corn plants and integrated detection of chlorophyll index. Firstly, the canopy image data set of maize seedling stage and jointing stage were collected, and two deep learning models of plant canopy instance segmentation and plant center target detection were compared. A corn plant location detection model based on MobileDet+SSDLite (single shot multibox detector lite) lightweight network was constructed to realize corn plant identification. Secondly, the identified plant heart RGB-NIR images were extracted, the matching and segmentation of RGB and NIR images were carried out, and the gray values of R, G, B and NIR were extracted to calculate the vegetation index. SPXY algorithm (sample set portioning based on joint X-Y distances) and SPA (successive projections algorithm) were used. The samples of the dataset were divided and the characteristic variables were screened, and then GPR (Gaussian process regression) algorithm was selected to establish the chlorophyll index detection model. The results showed that the recognition rate of the model reached 88.7% in the complex environment of occlusion overlap, and the recognition accuracy reached more than 90% in the non-overlapping environment. The model determination coefficient R2 of the modeling set of the chlorophyll content index detection model was 0.62, and the model determination coefficient R2 of the test set was 0.61. Field tests on the developed system showed that the detection rate of the system can reach 14.6 frames per second, and the average accuracy was 92.9%. The research results can effectively solve the problem of corn nutritional status detection in field environment, meeting the real-time detection requirements of field environment, and providing solutions and technical support for intelligent perception of crop production.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王楠,李震,李佳盟,張?jiān)?孫紅,李民贊.融合多光譜成像與深度學(xué)習(xí)的作物植株葉綠素檢測(cè)系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s2):260-269. WANG Nan, LI Zhen, LI Jiameng, ZHANG Yuan, SUN Hong, LI Minzan. Fusing Multispectral Imaging and Deep Learning in Plant Chlorophyll Index Detection System[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s2):260-269.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-30
  • 出版日期:
文章二維碼