ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v8-Pose的紅熟期草莓識(shí)別和果柄檢測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32001419)和山東省重點(diǎn)研發(fā)計(jì)劃(重大科技創(chuàng)新工程)項(xiàng)目(2022CXGC020701)


Red Ripe Strawberry Recognition and Stem Detection Based on Improved YOLO v8-Pose
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)高架栽培模式下的大棚草莓,,借鑒人體姿態(tài)檢測算法,建立了改進(jìn)YOLO v8-Pose模型對(duì)紅熟期草莓進(jìn)行識(shí)別與果柄關(guān)鍵點(diǎn)檢測,。通過對(duì)比YOLO v5-Pose,、YOLO v7-Pose、YOLO v8-Pose模型,,確定使用YOLO v8-Pose模型作為對(duì)紅熟期草莓識(shí)別與關(guān)鍵點(diǎn)預(yù)測的模型,。以YOLO v8-Pose為基礎(chǔ),對(duì)其網(wǎng)絡(luò)結(jié)構(gòu)添加Slim-neck模塊與CBAM注意力機(jī)制模塊,,提高模型對(duì)小目標(biāo)物體的特征提取能力,,以適應(yīng)草莓?dāng)?shù)據(jù)集的特點(diǎn)。改進(jìn)YOLO v8-Pose能夠有效檢測紅熟期草莓并準(zhǔn)確標(biāo)記出果柄關(guān)鍵點(diǎn),,P,、R、mAP-kp分別為98.14%,、94.54%,、97.91%,比YOLO v8-Pose分別提高5.41,、5.31,、8.29個(gè)百分點(diǎn)。模型內(nèi)存占用量為22MB,,比YOLO v8-Pose的占用量小 6MB,。此外,針對(duì)果園非結(jié)構(gòu)化的特征,,探究了光線、遮擋與拍攝角度對(duì)模型預(yù)測的影響,。對(duì)比改進(jìn)前后的模型在復(fù)雜環(huán)境下對(duì)紅熟期草莓的識(shí)別與果柄預(yù)測情況,,改進(jìn)YOLO v8-Pose在受遮擋、光線和角度影響情況下的mAP-kp分別為94.52%、95.48%,、94.63%,,較YOLO v8-Pose分別提高8.9、10.75,、5.17個(gè)百分點(diǎn),。改進(jìn)YOLO v8-Pose可在保證網(wǎng)絡(luò)模型精度的同時(shí)對(duì)遮擋、光線和拍攝角度等影響均具有較好的魯棒性,,能夠?qū)崿F(xiàn)對(duì)復(fù)雜環(huán)境下紅熟期草莓識(shí)別與果柄關(guān)鍵點(diǎn)預(yù)測,。

    Abstract:

    The improved YOLO v8-Pose model was established to identify red ripe strawberries and detect the key points of the stem in greenhouse strawberries under elevated cultivation mode. By comparing the YOLO v5-Pose, YOLO v7-Pose and YOLO v8-Pose models, the YOLO v8-Pose model was determined to be used as the model to identify and predict the key points of red ripe strawberries. Based on YOLO v8-Pose, Slim-neck module and CBAM attention mechanism module were added to its network structure to improve the feature extraction ability of the model for small target objects, so as to adapt to the characteristics of strawberry data set. The P, R and mAP-kp of the improved YOLO v8-Pose were 98.14%, 94.54% and 97.91%, respectively, which can effectively detect red ripe strawberries and accurately mark the key points of the fruit stalk, which was 5.41, 5.31 and 8.29 percentage points higher than that of YOLO v8-Pose. The model memory footprint was 22MB, which was 6MB less than that of the YOLO v8-Pose footprint.In addition, according to the unstructured characteristics of the orchard, the influence of light, occlusion and shooting angle on the model prediction was explored. Compared with the recognition and stem prediction of the improved YOLO v8-Pose model in the complex environment, the mAP-kp of the improved YOLO v8-Pose under the influence of occlusion, light and angle was 94.52%, 95.48% and 94.63%, respectively. Compared with YOLO v8-Pose, it was 8.9, 10.75 and 5.17 percentage points higher, respectively. The improved YOLO v8-Pose can ensure the accuracy of the network model, and at the same time, it had good robustness to the effects of occlusion, light and shooting angle, etc., which can realize the identification of red ripe strawberries in complex environments and the prediction of key points of fruit stalk.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉莫塵,褚鎮(zhèn)源,崔明詩,楊慶璐,王金星,楊化偉.基于改進(jìn)YOLO v8-Pose的紅熟期草莓識(shí)別和果柄檢測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s2):244-251. LIU Mochen, CHU Zhenyuan, CUI Mingshi, YANG Qinglu, WANG Jinxing, YANG Huawei. Red Ripe Strawberry Recognition and Stem Detection Based on Improved YOLO v8-Pose[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s2):244-251.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-29
  • 出版日期:
文章二維碼