ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)CBAM-DeepLab V3+的蘋果種植面積提取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2023TC131)


Apple Planting Area Extraction Based on Improved DeepLab V3+
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高蘋果種植區(qū)域的提取精度,,提出了一種基于Sentinel-2和MODIS融合影像的CBAM-DeepLab V3+模型,。影響蘋果種植區(qū)域提取精度的主要因素包括遙感影像的質(zhì)量以及語義分割模型的性能,。從影像質(zhì)量角度來看,采用基于時(shí)序的時(shí)空融合算法ESTARFM,,通過融合Sentinel-2和MODIS的遙感影像數(shù)據(jù),,實(shí)現(xiàn)更高空間分辨率和時(shí)間分辨率數(shù)據(jù)的獲取,。與此同時(shí),將訓(xùn)練樣本從原始的800幅擴(kuò)充至2400幅,,為后續(xù)語義分割模型提供更為充足的樣本容量,。在語義分割模型優(yōu)化方面,為了進(jìn)一步提高蘋果種植面積的提取精度,,以DeepLab V3+網(wǎng)絡(luò)結(jié)構(gòu)模型為基礎(chǔ),,引入基于通道和空間的CBAM注意力機(jī)制,進(jìn)而發(fā)展出CBAM-DeepLab V3+模型,。與原始DeepLab V3+模型相比,,加入CBAM注意力機(jī)制的CBAM-DeepLab V3+模型在擬合速度較慢、邊緣目標(biāo)分割不精確,、大尺度目標(biāo)分割內(nèi)部不一致和存在孔洞等缺陷方面實(shí)現(xiàn)了突破,,這些改進(jìn)提高了模型的訓(xùn)練與預(yù)測性能。本研究采用原始Sentinel-2影像及時(shí)空融合后的影像數(shù)據(jù)集,,結(jié)合煙臺市牟平區(qū)王格莊鎮(zhèn)的數(shù)據(jù)集和觀水鎮(zhèn)蘋果數(shù)據(jù)集對U-Net,、FCN以及DeepLab V3+模型和CBAM-DeepLab V3+模型進(jìn)行對比,研究發(fā)現(xiàn)在蘋果種植面積提取方面,,CBAM-DeepLab V3+優(yōu)化模型所取得的MIoU為84.6%,,蘋果種植面積提取準(zhǔn)確率達(dá)90.4%。U-Net,、FCN和DeepLab V3+模型的MIoU分別為79.2%,、75%、81.2%,。此外,,該模型預(yù)測的煙臺市牟平區(qū)王格莊鎮(zhèn)蘋果種植面積為3433.33hm2,與煙臺市國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計(jì)公報(bào)公布的3666.66hm2相比,,誤差為233.33hm2,,預(yù)測準(zhǔn)確率高達(dá)93.64%。

    Abstract:

    To improve the accuracy of apple cultivation area extraction, a CBAM-DeepLab V3+ model based on the fusion of Sentinel-2 and MODIS satellite images was proposed. The main factors affecting the accuracy of apple cultivation area extraction included the quality of remote sensing images and the performance of semantic segmentation models. From the perspective of image quality, a time-series spatiotemporal fusion algorithm called ESTARFM was employed to fuse Sentinel-2 and MODIS remote sensing image data, achieving higher spatial and temporal resolution data. Simultaneously, the training samples were increased from the original 800 to 2400, providing more abundant sample capacity for the subsequent semantic segmentation model. In terms of optimizing the semantic segmentation model, in order to further improve the accuracy of apple cultivation area extraction, a CBAM attention mechanism based on channel and spatial information was introduced into the DeepLab V3+ network, resulting in the development of the CBAM-DeepLab V3+ model. Compared with the original DeepLab V3+ model, the CBAM-DeepLab V3+ model with the addition of CBAM attention mechanism achieved significant breakthroughs in terms of slower fitting speed, less accurate edge target segmentation, inconsistency in segmenting large-scale targets, and existence of holes. These improvements enhanced the training and prediction performance of the model. The original Sentinel-2 images and the spatiotemporal fusion images were used, combined with the datasets of Wanggezhuang Town in Muping District and the apple dataset of Guanshui Town to compare the U-Net, FCN, DeepLab V3+ models, and the CBAM-DeepLab V3+ model. The research findings indicated that in terms of apple cultivation area extraction, the overall accuracy (MIoU) achieved by the optimized CBAM-DeepLab V3+ model was 84.6%, and the accuracy of apple cultivation area extraction reached 90.4%. In comparison, the MIoU of U-Net, FCN, and DeepLab V3+ models were 79.2%, 75%, and 81.2%, respectively. Additionally, the predicted apple cultivation area of Wanggezhuang Town in Muping District was 3433.33hm2, with only 233.33hm2 deviation compared with the data of 3666.66 hm2 published in the Yantai City National Economic and Social Development Statistics Report, resulting in a high prediction accuracy of 93.64%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

常晗,郭樹欣,張海洋,張瑤.基于改進(jìn)CBAM-DeepLab V3+的蘋果種植面積提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s2):206-213. CHANG Han, GUO Shuxin, ZHANG Haiyang, ZHANG Yao. Apple Planting Area Extraction Based on Improved DeepLab V3+[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s2):206-213.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-20
  • 出版日期:
文章二維碼