ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機可見光影像的新疆棉田田間尺度地物識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(32101621、61640413)和兵團財政科技計劃項目(2022CB001-05,、2021BB023-02)


Field Scale Cotton Land Feature Recognition Based on UAV Visible Light Images in Xinjiang
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對無人機采集影像時不同地物最佳分辨率難以確定的問題,,運用大疆M600Pro型無人機獲取棉花蕾期可見光影像,結(jié)合地面調(diào)查采樣數(shù)據(jù),,利用神經(jīng)網(wǎng)絡(luò)(Artificial neural networks,,ANN),、支持向量機(Support vector machines,SVM)和隨機森林(Random forest,,RF)3種監(jiān)督分類算法進行田間地物識別,。分析不同分辨率(1.00、2.50,、5.00,、7.50、10.00cm)下對地物的識別精度,,并結(jié)合算法運行時間,,從分辨率、算法精度和運行時間上找到適合南疆田間尺度棉花田塊地物識別的最佳分辨率和最優(yōu)算法,。試驗結(jié)果表明:當空間分辨率為1.00cm時,,SVM對地物的識別精度最高,總體精度與Kappa系數(shù)分別為99.857%和0.997,。隨著空間分辨率的降低,,總體精度和Kappa系數(shù)呈下降趨勢。當分辨率為2.50cm和5.00cm時,,采用RF算法,,運行時間最短,土地,、棉花和滴灌帶可獲得較好的識別精度,,總體精度與Kappa系數(shù)分別可達99.252%和0.986以上。當空間分辨率大于5.00cm時,,總體精度和Kappa系數(shù)下降,,滴灌帶制圖精度(Producer's accuracy,PA)和用戶精度(User's accuracy,,UA)下降最大,。空間分辨率小于5.00cm的圖像能夠很好地識別蕾期棉花地的典型地物,,可為進行田間地物類型及其分布狀況的識別提供指導(dǎo),。

    Abstract:

    In order to address the challenge of determining optimal resolutions for capturing images of different features using UAVs, the DJI M600Pro UAV was employed to acquire visible light images of cotton fields during the bud stage. By combining ground survey data and utilizing three supervised classification algorithms: artificial neural networks (ANN), support vector machines (SVM), and random forest (RF), field feature identification was conducted. The analysis encompassed varying resolutions (1.00cm, 2.50cm, 5.00cm, 7.50cm, 10.00cm) to evaluate the accuracy of feature recognition. Additionally, algorithm execution times were considered, with the aim of identifying the best resolution and optimal algorithm for cotton field feature recognition at the field scale in Southern Xinjiang, considering resolution, accuracy, and processing time. Experimental results indicated that at a spatial resolution of 1.00cm, SVM exhibited the highest accuracy in feature recognition, achieving an overall accuracy of 99.857% and a Kappa coefficient of 0.997. As spatial resolution was decreased, both overall accuracy and Kappa coefficient demonstrated a decreasing trend. At resolutions of 2.50cm and 5.00cm, when utilizing the RF algorithm, the shortest execution times were observed. Land, cotton, and drip irrigation lines displayed favorable recognition accuracy, with overall accuracy and Kappa coefficients surpassing 99.137% and 0.983, respectively. With resolutions exceeding 5.00cm, both overall accuracy and Kappa coefficient declined, notably impacting the mapping accuracy of drip irrigation lines (producer's accuracy, PA) and user accuracy (user's accuracy, UA). Images with resolutions lower than 5.00cm effectively identified characteristic features of bud-stage cotton fields, offering guidance for the identification of field feature types and their distribution patterns.

    參考文獻
    相似文獻
    引證文獻
引用本文

張楠楠,張曉,白鐵成,袁新濤,馬瑞,李莉.基于無人機可見光影像的新疆棉田田間尺度地物識別[J].農(nóng)業(yè)機械學(xué)報,2023,54(s2):199-205. ZHANG Nannan, ZHANG Xiao, BAI Tiecheng, YUAN Xintao, MA Rui, LI Li. Field Scale Cotton Land Feature Recognition Based on UAV Visible Light Images in Xinjiang[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s2):199-205.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-28
  • 出版日期:
文章二維碼