ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

多尺度自注意力特征融合的茶葉病害檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

河南省自然科學(xué)基金青年項(xiàng)目(222300420274)、河南省自然科學(xué)基金面上項(xiàng)目(232300421167),、河南省研究生課程思政示范課程項(xiàng)目(YJS2023SZ23)和信陽(yáng)師范大學(xué)研究生科研創(chuàng)新基金項(xiàng)目(2021KYJJ56)


Tea Disease Detection Method with Multi-scale Self-attention Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)茶葉病害檢測(cè)面臨的病害尺度多變,、病害密集與遮擋等諸多問題,提出了一種多尺度自注意力茶葉病害檢測(cè)方法(Multi-scale guided self-attention network,,MSGSN),。該方法首先采用基于VGG16的多尺度特征提取模塊,以獲取茶葉病害圖像在不同尺度下的局部細(xì)節(jié)特征,,例如紋理和邊緣等,,從而有效表達(dá)多尺度的局部特征。其次,,通過自注意力模塊捕獲茶葉圖像中像素之間的全局依賴關(guān)系,,實(shí)現(xiàn)病害圖像全局信息與局部特征之間的有效交互。最后,,采用通道注意力機(jī)制對(duì)多尺度特征進(jìn)行加權(quán)融合,,提升了模型對(duì)病害多尺度特征的表征能力,使其更加關(guān)注關(guān)鍵特征,,從而提高了病害檢測(cè)的準(zhǔn)確性,。實(shí)驗(yàn)結(jié)果表明,融合多尺度自注意力的茶葉病害檢測(cè)方法在背景復(fù)雜,、病害尺度多變等場(chǎng)景下具有更好的檢測(cè)效果,,平均精度均值達(dá)到92.15%。該方法可為茶葉病害的智能診斷提供參考依據(jù),。

    Abstract:

    Accurate detection of tea diseases is crucial for a high yield and quality of tea, thereby increasing production and minimizing economic losses. However, tea disease detection faces several challenges, such as variations in disease scales and densely occluded disease areas. To tackle these challenges, a novel method for detecting tea diseases called multi-scale guided self-attention network (MSGSN) was introduced, which incorporated multi-scale guided self-attention. The MSGSN method utilized a VGG16-based module for extracting multi-scale features to capture local details like texture and edges in tea disease images across multiple scales, effectively expressing the local multi-scale features. Subsequently, the self-attention module captured global dependencies among pixels in the tea leaf image, enabling effective interaction between global information and the disease image's local features. Finally, the channel attention mechanism was employed to weight, fuse, and prioritize the multi-scale features, thereby enhancing the model's ability to characterize the multi-scale features of the disease and improving disease detection accuracy. Experimental results demonstrated the MSGSN method's superior detection performance in complex backgrounds and varying disease scales, achieving an accuracy rate of 92.15%. This method served as a valuable reference for the intelligent diagnosis of tea diseases. In addition, the method can provide a scientific basis for the prevention and control of tea diseases and help farmers take timely and effective control measures. At the same time, the method can also provide technical support for the development of the tea industry.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫艷歌,吳飛,姚建峰,周棋贏,沈劍波.多尺度自注意力特征融合的茶葉病害檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(12):308-315. SUN Yange, WU Fei, YAO Jianfeng, ZHOU Qiying, SHEN Jianbo. Tea Disease Detection Method with Multi-scale Self-attention Feature Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):308-315.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-14
  • 出版日期:
文章二維碼