ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于IGWPSO-SVM的HMCVT濕式離合器摩擦副溫度預(yù)測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2016YFD0701103)和拖拉機(jī)動力系統(tǒng)國家重點實驗室開放項目(SKT2022006)


Prediction of HMCVT Wet Clutch Friction Pair Temperature Based on IGWPSO-SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統(tǒng)機(jī)器學(xué)習(xí)模型預(yù)測重型拖拉機(jī)液壓機(jī)械無級變速箱(Hydro mechanical continuously variable transmission,,HMCVT)濕式離合器溫度的局限性,,提出了基于改進(jìn)灰狼粒子群優(yōu)化-支持向量機(jī)(Improved grey wolf particle swarm optimization-support vector machine,IGWPSO-SVM)的HMCVT濕式離合器摩擦副溫度預(yù)測模型,。首先,,對濕式離合器摩擦副滑摩過程進(jìn)行熱分析,確定影響濕式離合器摩擦副溫度的因素,;然后,,基于支持向量機(jī)(Support vector machine,SVM)搭建溫度預(yù)測模型,,并利用改進(jìn)灰狼粒子群優(yōu)化(Improved grey wolf particle swarm optimization,,IGWPSO)算法對SVM的結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化;最后,,基于HMCVT濕式離合器試驗臺數(shù)據(jù)搭建離合器摩擦副溫度預(yù)測模型的樣本數(shù)據(jù)庫,,以濕式離合器摩擦副對偶鋼片為對象,對IGWPSO-SVM模型進(jìn)行試驗驗證,。試驗結(jié)果表明,,IGWPSO-SVM模型預(yù)測摩擦副對偶鋼片內(nèi)、中,、外徑溫度的平均絕對誤差(Mean absolute error,,MAE)、均方誤差(Mean square error,,MSE),、均方根誤差(Root mean square error,RMSE),、平均絕對百分比誤差(Mean absolute percentage error,,MAPE)的均值分別為3.3557℃、24.3212℃2、4.5976℃,、3.95%,,最高溫度預(yù)測誤差分別為7.8700、5.4300,、0.9900℃,,3次試驗的對偶鋼片內(nèi)、中,、外徑溫度MAE,、MSE、RMSE,、MAPE均值的平均值分別為3.3522℃,、24.7380℃2、4.9737℃,、4.12%,,3次試驗的內(nèi)、中,、外徑最高溫度平均絕對誤差(Maximum temperature mean absolute error,MTMAE)平均值為4.3733℃,,相比于其他4種已有的模型為最低,。研究結(jié)果可為重型拖拉機(jī)濕式離合器溫度的高精度預(yù)測及整車的可靠性控制提供理論依據(jù)。

    Abstract:

    Aiming at the limitations of traditional machine learning models in predicting the temperature of heavy tractor hydro mechanical continuously variable transmission(HMCVT)wet clutch, an improved grey wolf particle swarm optimization-support vector machine(IGWPSO-SVM) HMCVT wet clutch friction pair temperature prediction model was proposed. Firstly, the thermal analysis of the sliding friction of the wet clutch friction pair was conducted to determine the factors that affected the temperature of the wet clutch friction pair. Then a temperature prediction model was built based on support vector machine(SVM), and the structural parameters of SVM were optimized by using improved grey wolf particle swarm optimization(IGWPSO)algorithm. Finally, based on the HMCVT wet clutch test rig data, a sample database of the clutch friction pair temperature prediction model was established, and the IGWPSO-SVM model was tested and validated using the dual steel plate of the wet clutch friction pair. The experimental results showed that the mean absolute error(MAE), mean square error(MSE), root mean square error(RMSE), and mean absolute percentage error(MAPE)predicted by the IGWPSO-SVM model for the inner diameter, pitch diameter, and outer diameter of the dual steel sheet of the friction pair were 3.3557℃, 24.3212℃2, 4.5976℃ and 3.95%, respectively, the maximum temperature prediction errors were 7.8700℃, 5.4300℃ and 0.9900℃, respectively. The average values of three tests for MAE, MSE, RMSE and MAPE were 3.3522℃, 24.7380℃2, 4.9737℃ and 4.12%, respectively. The maximum temperature mean absolute error(MTMAE) for inner diameter, pitch diameter, and outer diameter was 4.3733℃, which was the lowest compared with that of the other four existing models. The research results can provide a theoretical basis for highprecision prediction of temperature of wet clutch of heavy-duty tractors and reliability of entire vehicle.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

魯植雄,王雨彤,王琳,趙一榮,王興偉,周俊博.基于IGWPSO-SVM的HMCVT濕式離合器摩擦副溫度預(yù)測[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(10):407-415. LU Zhixiong, WANG Yutong, WANG Lin, ZHAO Yirong, WANG Xingwei, ZHOU Junbo. Prediction of HMCVT Wet Clutch Friction Pair Temperature Based on IGWPSO-SVM[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):407-415.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-15
  • 出版日期:
文章二維碼