ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于超輕量化孿生網(wǎng)絡(luò)的自然場(chǎng)景奶牛單目標(biāo)跟蹤方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目(2022MS06008)


Single Target Tracking Method for Dairy Cows in Natural Scenes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)跟蹤模型泛化能力差,、跟蹤模型正樣本選取質(zhì)量低、深層模型參數(shù)量大不利于部署等問(wèn)題,,本文提出了超輕量化孿生網(wǎng)絡(luò)模型Siamese-remo,。首先結(jié)合傳統(tǒng)隨機(jī)采樣方法和go-turn方法,設(shè)計(jì)出新型的正負(fù)樣本選取策略,,增加模型泛化能力,;其次采用shiftbox-remo的數(shù)據(jù)增強(qiáng)方式均勻正樣本分布,并提升正樣本采集質(zhì)量,;然后通過(guò)改進(jìn)后的超輕量化Mobileone-remo網(wǎng)絡(luò)提取特征,,一定程度減少深層網(wǎng)絡(luò)對(duì)跟蹤平移不變性的破壞,并預(yù)設(shè)不同特征融合參數(shù),,單獨(dú)訓(xùn)練網(wǎng)絡(luò)分類和回歸;最終加入Center-rank loss函數(shù),,根據(jù)樣本點(diǎn)位置影響置信度,、IOU排名,對(duì)網(wǎng)絡(luò)分類回歸策略進(jìn)行優(yōu)化,。實(shí)驗(yàn)證明,,自然場(chǎng)景下奶牛單目標(biāo)跟蹤模型期望平均重合度(Expected average overlap, EAO)達(dá)到0.475,,相對(duì)于基線模型提升0.078,與現(xiàn)有跟蹤器對(duì)比取得了較好的成績(jī),,且參數(shù)量?jī)H為現(xiàn)有主流算法的1/20,,為后續(xù)自然場(chǎng)景下奶牛身份識(shí)別與目標(biāo)跟蹤系統(tǒng)提供了技術(shù)支持。

    Abstract:

    The cow single target tracking technology is a new technology proposed for intelligent management of dairy farms and it is the basis for the research of cow multi-objective tracking. The presence of padding in the deep network will destroy the translation invariance of the tracking model, the number of redundant parameters, and other addressing issues such as low quality of positive sample selection for tracking models, poor generalization ability of tracking models will also affect the cow tracking performance. Thus a high-performance cow single-target tracking method was proposed. Firstly, Siamese-remo model was used to extract features by improving Mobileone network to reduce the damage of tracking translation invariance by deep network to some extent, and different feature fusion parameters were preseted to train network classification and regression respectively; secondly, traditional method and go-turn method were combined to design a positive and negative sample selection strategy to improve the quality of positive sample collection; then special data enhancement was used to increase the generalization ability of the model; finally, Center-rank loss function was added to optimize the network classification and regression strategy according to the sample point location affecting confidence and IOU ranking. The experiment proved that the expected average overlap (EAO) of the cow single target tracking model in natural scenes reached 0.475, which was improved by 0.078 relative to the baseline model, and achieved better results compared with existing trackers. The number of parameters was only onetwentieth of the existing mainstream algorithms, which provided strong technical support for the subsequent cow identification and target tracking system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉月峰,劉博,暴祥,劉好峰,王越.基于超輕量化孿生網(wǎng)絡(luò)的自然場(chǎng)景奶牛單目標(biāo)跟蹤方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(10):282-293. LIU Yuefeng, LIU Bo, BAO Xiang, LIU Haofeng, WANG Yue. Single Target Tracking Method for Dairy Cows in Natural Scenes[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):282-293.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-06-05
  • 出版日期:
文章二維碼