ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SimCC-ShuffleNetV2的輕量化奶牛關(guān)鍵點(diǎn)檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32272931)和陜西省技術(shù)創(chuàng)新引導(dǎo)計(jì)劃項(xiàng)目(2022QFY11-02)


Lightweight Keypoint Detection Method of Dairy Cow Based on SimCC- ShuffleNetV2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對現(xiàn)有深度學(xué)習(xí)技術(shù)在奶牛關(guān)鍵點(diǎn)檢測研究中尚存在網(wǎng)絡(luò)復(fù)雜度高,、檢測速度慢等問題,提出了一種輕量化奶牛關(guān)鍵點(diǎn)檢測模型SimCC-ShuffleNetV2,。在模型中,,主干網(wǎng)絡(luò)采用ShuffleNetV2用于特征提取,有利于實(shí)現(xiàn)網(wǎng)絡(luò)的輕量化,;檢測頭采用SimCC用于關(guān)鍵點(diǎn)位置預(yù)測,,SimCC采取坐標(biāo)分類的方法使得檢測更加簡單高效,。為了驗(yàn)證模型的性能,本研究設(shè)計(jì)了奶牛的關(guān)鍵點(diǎn)及骨架結(jié)構(gòu),,并標(biāo)注了3600幅圖像用于模型的訓(xùn)練與測試,。試驗(yàn)結(jié)果表明,SimCC-ShuffleNetV2模型的AP50:95為88.07%,,浮點(diǎn)運(yùn)算量為1.5×108,,參數(shù)量為1.31×106,檢測速度為10.87f/s,,可以實(shí)現(xiàn)奶牛關(guān)鍵點(diǎn)的精確與高效檢測,。與基于回歸的DeepPose網(wǎng)絡(luò)、基于熱力圖的HRNet網(wǎng)絡(luò)進(jìn)行了對比試驗(yàn),,結(jié)果表明SimCC-ShuffleNetV2取得了精度與速度的良好平衡,。同時(shí),本研究通過更換不同主干與不同檢測頭的方式,,對比驗(yàn)證了不同模塊對模型性能影響,,本研究所提出的模型在所有試驗(yàn)中均取得了最佳結(jié)果,表明ShuffleNetV2與SimCC的組合具備良好的關(guān)鍵點(diǎn)檢測性能,。為了驗(yàn)證模型的有效性,,將模型應(yīng)用于4種動(dòng)作視頻中提取骨架序列并將其送入ST-GCN網(wǎng)絡(luò)以實(shí)現(xiàn)不同動(dòng)作的分類,其分類準(zhǔn)確率為84.56%,,表明本研究提出的SimCC-ShuffleNetV2模型是良好的關(guān)鍵點(diǎn)提取器,,可為奶牛行為識(shí)別等任務(wù)提供關(guān)鍵信息支撐。

    Abstract:

    Cow keypoint detection is important in research fields such as cow body measurement, behavior recognition, and weight estimation. However, existing deep learning methods for cow keypoint detection still suffer problems such as high network complexity and slow detection speed. A lightweight cow keypoint detection model SimCC-ShuffleNetV2 was proposed. In this model, ShuffleNetV2 was used as the backbone for feature extraction to achieve network lightweight. SimCC was used as the head to achieve keypoint position prediction. SimCC adopted a coordinate classification method that was simple and efficient. To validate the effectiveness of the model, cow keypoints and skeleton structures were designed, and 3600 images were annotated for training and testing. Experimental results showed that the SimCC-ShuffleNetV2 model got an AP50:95 of 88.07%, FLOPs of 1.5×108, parameters of 1.31×106, and detection speed of 10.87f/s, achieving accurate and efficient detection of cow keypoints. Experimental comparisons with the regression-based DeepPose and Heatmap-based HRNet networks demonstrated that SimCC-ShuffleNetV2 got a good balance between accuracy and speed. Moreover, different backbones and detection heads were replaced to verify the influence of different modules on model performance. And the proposed model achieved the best results in all experiments, demonstrating that the combination of ShuffleNetV2 and SimCC had good keypoint detection performance. The model was applied to extract skeleton sequences from four different action videos of cows, and the ST-GCN network was used to classify the four videos, achieving an 84.56% classification accuracy, which indicated that the proposed SimCC-ShuffleNetV2 model was a good keypoint extractor and could provide key information support for tasks such as cow action recognition.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

宋懷波,華志新,馬寶玲,溫毓晨,孔祥鳳,許興時(shí).基于SimCC-ShuffleNetV2的輕量化奶牛關(guān)鍵點(diǎn)檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(10):275-281,,363. SONG Huaibo, HUA Zhixin, MA Baoling, WEN Yuchen, KONG Xiangfeng, XU Xingshi. Lightweight Keypoint Detection Method of Dairy Cow Based on SimCC- ShuffleNetV2[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):275-281,,363.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-23
  • 出版日期:
文章二維碼