ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v4和ICNet的番茄串檢測模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

山東省自然科學(xué)基金項(xiàng)目(ZR2020MF005)


Development of Detection Model for Tomato Clusters Based on Improved YOLO v4 and ICNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對深層神經(jīng)網(wǎng)絡(luò)模型部署到番茄串采摘機(jī)器人,,存在運(yùn)行速度慢,對目標(biāo)識別率低,,定位不準(zhǔn)確等問題,,本文提出并驗(yàn)證了一種高效的番茄串檢測模型。模型由目標(biāo)檢測與語義分割兩部分組成,。目標(biāo)檢測負(fù)責(zé)提取番茄串所在的矩形區(qū)域,,利用語義分割算法在感興趣區(qū)域內(nèi)獲取番茄莖位置。在番茄檢測模塊,,設(shè)計(jì)了一種基于深度卷積結(jié)構(gòu)的主干網(wǎng)絡(luò),,在實(shí)現(xiàn)模型參數(shù)稀疏性的同時(shí)提高目標(biāo)的識別精度,采用K-means++聚類算法獲得先驗(yàn)框,,并改進(jìn)了DIoU距離計(jì)算公式,,進(jìn)而獲得更為緊湊的輕量級檢測模型(DC-YOLO v4)。在番茄莖語義分割模塊(ICNet)中以MobileNetv2為主干網(wǎng)絡(luò),,減少參數(shù)計(jì)算量,,提高模型運(yùn)算速度。將采摘模型部署在番茄串采摘機(jī)器人上進(jìn)行驗(yàn)證,。采用自制番茄數(shù)據(jù)集進(jìn)行測試,,結(jié)果表明,DC-YOLO v4對番茄及番茄串的平均檢測精度為99.31%,比YOLO v4提高2.04個(gè)百分點(diǎn),。語義分割模塊的mIoU為81.63%,,mPA為91.87%,比傳統(tǒng)ICNet的mIoU提高2.19個(gè)百分點(diǎn),,mPA提高1.47個(gè)百分點(diǎn),。對番茄串的準(zhǔn)確采摘率為84.8%,完成一次采摘作業(yè)耗時(shí)約6s,。

    Abstract:

    For the deep neural network model deployed to embedded devices (such as tomato clusters picking robots), there are some problems, such as slow running speed, low recognition rate of picking targets, inaccurate positioning and so on, an efficient model for tomato clusters detection was proposed and verified. The model was composed of two modules: detection and semantic segmentation. Target detection was responsible for extracting the rectangular region where the tomato cluster was located, and then using the semantic segmentation algorithm to obtain the tomato stem position in the rectangular region. In the tomato detection module, a backbone network based on deep convolution structure was designed to improve the accuracy of crop recognition while realizing the sparsity of model parameters. K-means++ clustering algorithm was used to obtain a priori frame, and DIoU distance calculation formula was improved to obtain a more compact lightweight detection model (DC-YOLO v4). In the semantic segmentation module (ICNet), MobileNetv2 was used as the backbone network to reduce the amount of parameter calculation and improve the operation speed of the model. The model was deployed on the tomato clusters picking robot for verification. The self-made tomato data set was used for testing. The results showed that the average detection accuracy was 99.31% on tomato test set, outperforming YOLO v4 by 2.04 percentage points. The mIoU and mPA achieved 81.63% and 91.87% on tomato stem set, exceeding ICNet by 2.19 percentage points and 1.47 percentage points, respectively. The accurate picking rate of tomato clusters was 84.8%, it took 6s to complete a picking operation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉建航,何鑒恒,陳海華,王曉政,翟海濱.基于改進(jìn)YOLO v4和ICNet的番茄串檢測模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(10):216-224,254. LIU Jianhang, HE Jianheng, CHEN Haihua, WANG Xiaozheng, ZHAI Haibin. Development of Detection Model for Tomato Clusters Based on Improved YOLO v4 and ICNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):216-224,254.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-10-16
  • 出版日期:
文章二維碼