ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

Transformer優(yōu)化及其在蘋果病蟲命名實體識別中的應(yīng)用
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

陜西省重點研發(fā)計劃項目(2019ZDLNY07-06-01)


Transformer Optimization and Application in Named Entity Recognition of Apple Diseases and Pests
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高蘋果生產(chǎn)領(lǐng)域?qū)嶓w識別的準確性,,提出一種新的Transformer優(yōu)化模型,。首先,,為解決蘋果生產(chǎn)數(shù)據(jù)集的缺失,基于蘋果栽培領(lǐng)域園藝專家的知識經(jīng)驗,,創(chuàng)建以蘋果病蟲害為主的產(chǎn)業(yè)數(shù)據(jù)集,。通過字向量與詞向量的拼接,提高文本語義表征的準確性,;隨后,,為防止位置信息缺失,引入具有方向和距離感知的注意力機制,,平均集成BiLSTM的上下文長距離依賴特征;最后,,結(jié)合條件隨機場(Conditional random fields, CRF)約束上下文標(biāo)注結(jié)果,,最終得到Transformer優(yōu)化模型。實驗結(jié)果表明,,所提方法在蘋果病蟲命名實體識別中的F1值可達92.66%,,可為農(nóng)業(yè)命名實體的準確智能識別提供技術(shù)手段。

    Abstract:

    Aiming to improve the accuracy of entity identification in apple production field, a new Transformer optimization model was proposed. Firstly, in order to address the lack of apple production dataset, a corpus focusing on diseases and pests was constructed based on the knowledge and experience of horticultural experts in related field of apple cultivation. The accuracy of semantic representation of text was improved by combining word vector and character vector. Secondly, since the location information was crucial to text semantics,,but the traditional Transformer model lacks the directionality of location information, in order to take advantage of the location features of text, an attention mechanism with direction and distance perception was introduced in Transformer encoder. And the contextual long-distance dependence features of BiLSTM was integrated on average to enhance semantic representation. Lastly, with imposing restrictions on labeling results by conditional random fields (CRF), the Transformer optimization model was obtained. The experimental results showed that the F1 score of the proposed method was 92.66% in Chinese named entity recognition of Apple diseases and pests. It indicated that the method proposed could effectively identify the named entities of apple diseases and pest, and provide a technical means for the accurate and intelligent identification of other agricultural named entities.

    參考文獻
    相似文獻
    引證文獻
引用本文

蒲攀,張越,劉勇,聶炎明,黃鋁文. Transformer優(yōu)化及其在蘋果病蟲命名實體識別中的應(yīng)用[J].農(nóng)業(yè)機械學(xué)報,2023,54(6):264-271. PU Pan, ZHANG Yue, LIU Yong, NIE Yanming, HUANG Lüwen. Transformer Optimization and Application in Named Entity Recognition of Apple Diseases and Pests[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):264-271.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-11
  • 出版日期:
文章二維碼