ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)Mask R-CNN的蘋果園害蟲識(shí)別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32071908)和財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)(蘋果)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-27)


Pest Identification Method in Apple Orchard Based on Improved Mask R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)基礎(chǔ)卷積神經(jīng)網(wǎng)絡(luò)識(shí)別蘋果園害蟲易受背景干擾及重要特征表達(dá)能力不強(qiáng)問題,提出一種基于改進(jìn)Mask R-CNN的蘋果園害蟲識(shí)別方法,。首先,,基于Haar特征方法對(duì)多點(diǎn)采集得到的蘋果園害蟲圖像進(jìn)行迭代初分割,提取害蟲單體圖像樣本,,并對(duì)該樣本進(jìn)行多途徑擴(kuò)增,,得到用于深度學(xué)習(xí)的擴(kuò)增樣本數(shù)據(jù)集,。其次,對(duì)Mask R-CNN中的特征提取網(wǎng)絡(luò)進(jìn)行優(yōu)化,,采用嵌入注意力機(jī)制模塊CBAM的ResNeXt網(wǎng)絡(luò)作為改進(jìn)模型的Backbone,,增加模型對(duì)害蟲空間及語義信息的提取,有效避免背景對(duì)模型性能的影響,;同時(shí)引入Boundary損失函數(shù),,避免害蟲掩膜邊緣缺失及定位不準(zhǔn)確問題。最后,,以原始Mask R-CNN模型作為對(duì)照模型,,平均精度均值作為評(píng)價(jià)指標(biāo)進(jìn)行試驗(yàn)。結(jié)果表明,,改進(jìn)Mask R-CNN模型平均精度均值達(dá)到96.52%,,相比于原始Mask R-CNN模型,提高4.21個(gè)百分點(diǎn),,改進(jìn)Mask R-CNN可精準(zhǔn)有效識(shí)別蘋果園害蟲,,為蘋果園病蟲害綠色防控提供技術(shù)支持。

    Abstract:

    Aiming at the problem that the basic convolutional neural network is vulnerable to background interference and the expression ability of important features is not strong in apple orchard pest recognition, an apple orchard pest recognition method based on improved Mask R-CNN was proposed. Firstly, based on Haar feature method, the apple orchard pest images collected from multiple points were iteratively preliminarily segmented, the single pest image sample was extracted, and multichannel amplification on the sample was performed to obtain the amplified sample data for deep learning. Secondly, the feature extraction network in Mask R-CNN was optimized, and the ResNeXt network embedded in the attention mechanism module CBAM was used as the Backbone of the improved model, which increased the extraction of pest space and semantic information by the model, and effectively avoided the influence of background on performance of the model. At the same time, the Boundary loss function was introduced to avoid the problem of missing edge of pest mask and inaccurate positioning. Finally, the original Mask R-CNN model was used as the control model, and the mean average precision (mAP) was used as the evaluation index to conduct experiments. The results showed that the mean average precision of the improved Mask R-CNN model reached 96.52%. Compared with the original Mask R-CNN model, the mean average precision was increased by 4.21 percentage points. The results showed that the improved Mask R-CNN can accurately and effectively identify pests in apple orchards. The research result can provide technical support for green control of apple orchard pests and diseases.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王金星,馬博,王震,劉雙喜,慕君林,王云飛.基于改進(jìn)Mask R-CNN的蘋果園害蟲識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(6):253-263,360. WANG Jinxing, MA Bo, WANG Zhen, LIU Shuangxi, MU Junlin, WANG Yunfei. Pest Identification Method in Apple Orchard Based on Improved Mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):253-263,360.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-24
  • 出版日期:
文章二維碼