ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合無人機(jī)光譜信息與紋理特征的棉花葉面積指數(shù)估測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

新疆農(nóng)業(yè)科學(xué)院科技創(chuàng)新重點(diǎn)培育項(xiàng)目(xjnky-2020003),、新疆農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新平臺(tái)能力提升建設(shè)專項(xiàng)(25107020-202001),、新疆維吾爾自治區(qū)天山英才人才培養(yǎng)項(xiàng)目、國家自然科學(xué)基金項(xiàng)目(31960386)、新疆維吾爾自治區(qū)重大科技專項(xiàng)(2020A01002-4)和新疆農(nóng)業(yè)大學(xué)研究生科研創(chuàng)新計(jì)劃項(xiàng)目(XJAUGRI2022036)


Cotton Leaf Area Index Estimation Combining UAV Spectral and Textural Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    農(nóng)田尺度下作物葉面積指數(shù)(Leaf area index,,LAI)的精準(zhǔn)監(jiān)測,,對于研究群體結(jié)構(gòu)對產(chǎn)量和管理措施的響應(yīng)具有重要意義,。目前普遍采用無人機(jī)光譜特征反演作物的LAI指數(shù),,作為長勢和冠層結(jié)構(gòu)診斷的重要依據(jù),其估測精度的準(zhǔn)確性是否可以提高仍有待研究,。作物表面特征,,如灰度和顏色,在不同生育階段會(huì)發(fā)生變化,。為此,,本研究考慮到LAI的影響因素,設(shè)置不同的種植密度和氮素水平營造差異化的冠層結(jié)構(gòu),,利用搭載多光譜傳感器的無人機(jī)獲取主要生育時(shí)期棉花的冠層圖像得到植被指數(shù)(Vegetation indexs,VIs),,基于二階概率統(tǒng)計(jì)濾波(Co-occurrence measures)方法獲取均值(MEA)、方差(VAR),、協(xié)同性(HOM),、對比度(CON)、相異性(DIS),、信息熵(ENT),、二階矩(SEM)和相關(guān)性(COR)等8個(gè)紋理特征值(Texture features, TFs)。最后,,采用支持向量機(jī)回歸(SVR),、偏最小二乘法(PLSR),、深度神經(jīng)網(wǎng)絡(luò)(DNN)分別建立基于光譜特征、紋理特征以及二者結(jié)合的棉花LAI的估算模型,,并比較差異,。試驗(yàn)結(jié)果表明:VI(nir/green)、VI(nir/red),、GNDVI,、OSAVI和均值與LAI具有較高的相關(guān)性;采用SVR建立的LAI估測精度最高(R2=0.78,,RMSE為0.22,,RRMSE為0.10);在3種估算模型中,,植被指數(shù)與紋理特征相結(jié)合的SVR模型,,較VIs、TFs模型精度分別提高7.89%和32.26%,。因此,,融合無人機(jī)光譜信息和圖像紋理的LAI估算模型為密植作物棉花冠層結(jié)構(gòu)的診斷提供了一種可行,、準(zhǔn)確的方法,。

    Abstract:

    Accurate prediction of crop leaf area index (LAI) at farm scale is important for studying the response of population structure to yield and management practices. The inversion of the LAI of crops by spectral features from drones is now commonly used as an important basis for diagnosing crop growth and canopy structure, and it remains to be investigated whether the accuracy of its estimation can be improved. Crop surface features, such as greyscale and colour, can change under different levels of structural complexity. For this reason, the influence of LAI was taken into account by setting different planting densities and nitrogen levels to create a differentiated canopy structure, using an unmanned aerial vehicle with a multispectral sensor to obtain canopy images of cotton during the main fertility periods to obtain vegetation indices and second-order probability-based statistical filtering (co-occurrence measures) in the near infrared band to extract mean (MEA), variance (VAR), synergy (HOM), contrast (CON), dissimilarity (DIS), information entropy (ENT), secondorder moments (SEM) and correlation (COR) of the eight texture feature values. Finally, support vector regression (SVR), partial least squares regression (PLSR) and deep neural networks (DNN) were used to develop models for estimating cotton LAI based on spectral features, texture features and a combination of the two, respectively, and to compare the differences. The results showed that the vegetation indices VI(nir/green), VI(nir/red), GNDVI, OSAVI and mean had high correlation with LAI; the LAI estimation accuracy established by SVR was the highest (R2=0.78, RMSE was 0.22, RRMSE was 0.10); among three estimation models, the SVR model combining VIs and texture features improved the accuracy by 7.89% (VIs) and 32.26% (TFs), respectively, over the single parameter type model. Thus the LAI estimation model incorporating UAV spectral information and image texture provided a feasible and accurate method for the diagnosis of cotton canopy structure in dense crops.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

邵亞杰,湯秋香,崔建平,李曉娟,王亮,林濤.融合無人機(jī)光譜信息與紋理特征的棉花葉面積指數(shù)估測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(6):186-196. SHAO Yajie, TANG Qiuxiang, CUI Jianping, LI Xiaojuan, WANG Liang, LIN Tao. Cotton Leaf Area Index Estimation Combining UAV Spectral and Textural Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):186-196.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-01-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-20
  • 出版日期:
文章二維碼