ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

作物病害智能診斷與處方推薦技術(shù)研究進(jìn)展
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(62176261)和全國農(nóng)業(yè)專業(yè)學(xué)位研究生教育指導(dǎo)委員會(huì)2021年研究生教育研究重點(diǎn)項(xiàng)目(2021-NYZD-07)


Research Progress in Intelligent Diagnosis and Prescription Recommendation of Crop Diseases
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    由“植物診所”形成的電子病歷為作物病害處方推薦提供了新的思路,。如何高效地挖掘電子病歷數(shù)據(jù)并輔助作物病害處方推薦,,目前還是亟待解決的研究熱點(diǎn)問題,。在總結(jié)和整理現(xiàn)有國內(nèi)外研究文獻(xiàn)的基礎(chǔ)上,,對(duì)基于顯微圖像的作物病害病菌孢子識(shí)別、基于光譜的作物病害診斷,、基于電子病歷的作物病害處方推薦等作物病害診斷與處方推薦關(guān)鍵技術(shù)進(jìn)行了系統(tǒng)分析與討論,。綜述結(jié)果表明,圍繞作物病害病菌侵染過程,,以智能化處方推薦需求為導(dǎo)向,,開展基于電子病歷數(shù)據(jù)挖掘的作物病害處方推薦研究,將成為一個(gè)研究重點(diǎn),。針對(duì)作物病害處方推薦過程中,,存在由于作物病害致病機(jī)理復(fù)雜、作物品種及病害種類多,、病害病癥動(dòng)態(tài)變化且特征多等特點(diǎn)和難點(diǎn),,研究基于電子病歷數(shù)據(jù)挖掘的作物病害致病機(jī)理解析、診斷推理,、智能化處方推薦及其應(yīng)用策略,,將是研究的重大方向;探索基于知識(shí)圖譜分析,、大數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)算法推理等關(guān)鍵技術(shù)的作物病害電子病歷數(shù)據(jù)挖掘分析研究,,從區(qū)域宏觀視角可視化解析作物病害致病機(jī)理及其與特征間的關(guān)聯(lián)關(guān)系,面向?qū)嶋H應(yīng)用場(chǎng)景實(shí)現(xiàn)基于診斷推理的單一作物病害處方推薦,、基于語義匹配的多種作物多種病害處方推薦,,具有更大的實(shí)際意義。

    Abstract:

    The plant electronic medical records formed by the “plant clinic” provide new ideas for the prescription recommendation of crop diseases. How to efficiently mine electronic medical record data and assist crop disease prescription recommendation is still a hot research issue, and needs to be solved urgently at home and abroad. On the basis of summarizing and sorting out the existing domestic and foreign research literature, the key technologies of crop disease diagnosis and prescription recommendation, such as spores recognition based on microscopic image, crop disease diagnosis based on spectrum, crop disease prescription recommendation based on electronic medical records, were systematically analyzed and discussed. The results showed that centering on the infection process of crop disease pathogens, the research on crop disease prescription recommendation based on electronic medical record data mining would become a research focus, guided by intelligent prescription recommendation demand. In the process of crop disease prescription recommendation, due to the characteristics and difficulties of crop disease pathogenesis complex, crop varieties and disease types, disease dynamic changes and characteristics, it would be an important direction to research on the analysis of crop disease pathogenesis, diagnostic reasoning, intelligent prescription recommendation and its application strategy based on electronic medical record data mining. It was of greater practical significance to explore the data mining analysis and research of crop disease electronic medical record based on key technologies such as knowledge graph analysis, big data mining and machine learning algorithm reasoning, and visually analyze the pathogenic mechanism of crop disease, and the correlation between characteristics from the regional macro perspective in order to realize single crop disease prescription recommendation based on diagnostic reasoning, and multiple crop disease prescription recommendation based on semantic matching for practical application scenarios.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張領(lǐng)先,韓夢(mèng)瑤,丁俊琦,李凱雨.作物病害智能診斷與處方推薦技術(shù)研究進(jìn)展[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(6):1-18. ZHANG Lingxian, HAN Mengyao, DING Junqi, LI Kaiyu. Research Progress in Intelligent Diagnosis and Prescription Recommendation of Crop Diseases[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):1-18.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-12-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-01
  • 出版日期:
文章二維碼