ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLOX的復(fù)雜背景下木薯葉病害檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(62162003)、廣西重點研發(fā)計劃項目(桂科AB19110050)和南寧市科技重大專項(20211005)


Detection of Cassava Leaf Diseases under Complicated Background Based on YOLOX
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決田間環(huán)境下由于葉片間遮蓋和堆疊等因素引起的木薯葉病害識別困難的問題,,本文提出一種基于改進YOLOX網(wǎng)絡(luò)的木薯葉病害檢測(Cassava leaf disease detection,,CDD)模型。首先,,對復(fù)雜背景下木薯葉病害圖像數(shù)據(jù)集進行數(shù)據(jù)增強,,以減少環(huán)境影響造成的識別困難。其次,,在YOLOX網(wǎng)絡(luò)的基礎(chǔ)上,,使用多尺度特征提取模塊加強細(xì)粒度特征提取并降低模型計算量,同時嵌入通道注意力機制,,提高網(wǎng)絡(luò)的表征能力,。最后,結(jié)合質(zhì)量焦點損失函數(shù)作為分類損失函數(shù)輔助網(wǎng)絡(luò)收斂,,提高目標(biāo)分類的準(zhǔn)確性,。實驗結(jié)果表明,提出的CDD模型對復(fù)雜背景下木薯葉病害進行檢測,,網(wǎng)絡(luò)參數(shù)量為5.04×106,,平均精度均值達93.53%,比基礎(chǔ)模型高6.02個百分點,,綜合檢測能力優(yōu)于多種主流模型,。因此,本文提出的CDD模型對田間木薯葉病害具有更快更準(zhǔn)確的檢測能力,,為實現(xiàn)農(nóng)作物病害檢測提供了可借鑒的方法,。

    Abstract:

    The present method has some difficulties in recognizing cassava leaf diseases in a field environment, such as covering and stacking between leaves. Based on the YOLOX network, cassava leaf disease detection (CDD) model was proposed. Firstly, the cassava leaf disease image data under complex background was augmented to reduce the recognition difficulty caused by environmental impact. Secondly, built on the YOLOX network, the lightweight multi-scale feature extraction (LME) module was used to strengthen fine-grained feature extraction and reduce the amount of model calculation. At the same time, the channel attention mechanism was embedded to improve the representation ability of the network. Finally, the quality focal loss was used as a part of the classification loss to assist the network convergence and improve the accuracy of target classification. In conclusion, the proposed CDD model can detect cassava leaf disease under complex background. The amount of network parameters was 5.04×106 and the mean average precision was 93.53%, which was 6.02 percentage points higher than that of the non-optimized network model. Comprehensive detection ability was better than that of previous models. Therefore, the proposed method CDD had faster and more accurate detection ability for cassava leaf diseases in the field, and provided a reference method for realizing intelligent field detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

宋玲,曹勉,胡小春,賈沛沅,陳燕,陳寧江.基于YOLOX的復(fù)雜背景下木薯葉病害檢測方法[J].農(nóng)業(yè)機械學(xué)報,2023,54(3):301-307. SONG Ling, CAO Mian, HU Xiaochun, JIA Peiyuan, CHEN Yan, CHEN Ningjiang. Detection of Cassava Leaf Diseases under Complicated Background Based on YOLOX[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):301-307.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-04-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-10
  • 出版日期:
文章二維碼