ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于知識圖譜的花卉病蟲害知識管理方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

上海市科技創(chuàng)新計(jì)劃項(xiàng)目(20dz1203800)


Knowledge Management Method of Flower Diseases and Pests Based on Knowledge Graph
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決花卉病蟲害領(lǐng)域中病蟲害防治因素關(guān)系復(fù)雜、知識冗余等問題,結(jié)合知識圖譜對知識組織和管理的技術(shù),提出一種基于知識圖譜的花卉病蟲害知識管理方法。首先,根據(jù)文獻(xiàn)提取包括環(huán)境在內(nèi)的花卉病蟲害防治要素,構(gòu)建花卉病蟲害本體模型并存儲在RDF圖中,實(shí)現(xiàn)對知識規(guī)范性和完整性的控制;其次,對花卉病蟲害領(lǐng)域文本進(jìn)行分析,針對分析得到的文本特點(diǎn),提出融合頭尾實(shí)體分離“01”標(biāo)注方法、輕量級雙向轉(zhuǎn)換編碼表示模型(A lite BERT, ALBERT)和引入詞性特征的級聯(lián)標(biāo)注模型(CasPOSRel)的抽取框架進(jìn)行三元組抽取;之后利用自定義RDF2PG映射算法,按照RDF圖中的本體模型將抽取到的三元組存入Neo4j數(shù)據(jù)庫中,完成對花卉病蟲害知識的存儲及管理。實(shí)驗(yàn)結(jié)果證明提出的抽取框架中標(biāo)注方法、預(yù)訓(xùn)練模型與抽取模型相比基線方法F1值分別提升0.88、4.90、8.57個百分點(diǎn),同時得到抽取結(jié)果F1值為95.07%。通過知識發(fā)現(xiàn)表明該知識管理方法能有效組織管理病蟲害知識,幫助花卉種植人員進(jìn)行更為有效的病蟲害防治工作。

    Abstract:

    In order to solve the problems of complex relationship of factors and mixed knowledge in the field of flower diseases and pests, combined with the knowledge organization and management technology of knowledge graph, a knowledge management method of flower diseases and pests based on knowledge graph was proposed. Firstly, according to the literatures, the flower diseases and pests control elements, including environment were extracted, the flower diseases and pests ontology model was constructed and stored in RDF to realize the control of knowledge standardization and integrity. Secondly, according to the text characteristics obtained from the analysis, the triple extraction framework was proposed which combined the “01” tagging method of head and tail entity separation, a lite bidirectional encoder representations from transformers (ALBERT) and cascade tagging model with part of speech features (CasPOSRel).Then using the custom RDF2PG mapping algorithm to complete the storage and management of flower diseases and pests knowledge. The experiments showed that the F1 value of the tagging methods, pretrained model and extraction model in proposed extraction framework was increased by 0.88, 4.90 and 8.57 percentage points compared with that of baseline methods, and the F1 value of the extraction result was 95.07%. The knowledge discovery showed that the knowledge management method effectively organized and managed the knowledge of flower diseases and pests, and helped the flower growers to carry out more effective pests control work.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳明,朱玨樟,席曉桃.基于知識圖譜的花卉病蟲害知識管理方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(3):291-300. CHEN Ming, ZHU Juezhang, XI Xiaotao. Knowledge Management Method of Flower Diseases and Pests Based on Knowledge Graph[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):291-300.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-05-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-10
  • 出版日期:
文章二維碼