ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于特征優(yōu)選的多時相SAR數(shù)據(jù)水稻信息提取方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFB0505001)


Extraction of Rice Information Using Multi-temporal SAR Data Based on Feature Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    多時相合成孔徑雷達(dá)(Synthetic aperture radar,SAR)數(shù)據(jù)可為水稻提取提供豐富信息,,在多云多雨地區(qū)對水稻識別和監(jiān)測具有獨(dú)特優(yōu)勢,。但過多特征變量的加入,一定程度上造成“維數(shù)災(zāi)難”及信息冗余,因此,,本文提出一種基于多時相后向散射特性及干涉相干性優(yōu)選特征的水稻提取方法,。基于研究區(qū)水稻生長周期的多時相Sentinel-1 SAR數(shù)據(jù),,構(gòu)建后向散射系數(shù)和干涉相干系數(shù)特征集,,利用ReliefF算法對特征重要性進(jìn)行排序,同時采用JM距離確定最優(yōu)特征數(shù)目完成最優(yōu)特征選擇,,結(jié)合隨機(jī)森林分類算法對研究區(qū)水稻進(jìn)行提取及精度評價,。結(jié)果表明:基于優(yōu)選特征提取水稻面積相對誤差為4.96%,總體精度達(dá)到92.48%,,Kappa系數(shù)為0.90,;從優(yōu)選特征剔除干涉相干特征提取的水稻面積相對誤差增加2.39個百分點(diǎn),總體分類精度和Kappa系數(shù)分別降低4.03個百分點(diǎn),、0.06,,說明干涉相干性有利于水稻信息提取?;诙鄷r相后向散射特性及干涉相干性的特征優(yōu)選減少了數(shù)據(jù)冗余,,提高了運(yùn)算效率,可實(shí)現(xiàn)大范圍高精度水稻提取,。

    Abstract:

    Synthetic aperture radar (SAR) data has unique advantages for rice identification and monitoring in cloudy and rainy weather. Multi-temporal SAR and multi-features can provide rich information for rice extraction, but too many feature variables will cause dimension disaster and information redundancy to some extent. Therefore, a rice extraction method based on multi-temporal backscattering characteristics and coherent coefficient optimization features was proposed. Based on the multi-temporal Sentinel-1 SAR data during the rice growth cycle in the study area, the feature sets of backscattering coefficient and coherence coefficient were constructed, and the importance of the features was sorted by ReliefF algorithm. At the same time, JM distance was used to determine the optimal number of features to complete the optimal features selection. According to the optimal features, the rice planting area in the study area was extracted by the random forest classification algorithm. The results showed that the error of rice area extraction based on the optimal features was 4.96%, the overall accuracy planting was 92.48%, and the Kappa coefficient was 0.90. Excluding coherence coefficient features from the optimal features to extract rice, the area error was increased by 2.39 percentage points, and the overall classification accuracy and Kappa coefficient were decreased by 4.03 percentage points and 0.06, respectively, which showed that coherence coefficient was beneficial to rice information extraction. Based on the characteristics of multi-temporal backscattering and coherence coefficient, data redundancy was reduced, operation efficiency was improved, and large-scale and high-precision rice extraction can be realized.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

于飛,呂爭,隋正偉,李俊杰,蓋彥鋒.基于特征優(yōu)選的多時相SAR數(shù)據(jù)水稻信息提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(3):259-265,,327. YU Fei, Lü Zheng, SUI Zhengwei, LI Junjie, GAI Yanfeng. Extraction of Rice Information Using Multi-temporal SAR Data Based on Feature Optimization[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):259-265,327.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-12-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-10
  • 出版日期:
文章二維碼