ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于目標檢測及邊緣支持的魚類圖像分割方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61972240)和上海市科委部分地方高校能力建設項目(20050501900、20050500700)


Fish Image Segmentation Method Based on Object Detection and Edge Support
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    對圖像中的魚類目標進行分割是提取魚類生物學信息的關鍵步驟,。針對現(xiàn)有方法對養(yǎng)殖條件下的魚類圖像分割精度較低的問題,,提出了基于目標檢測及邊緣支持的魚類圖像分割方法。首先,設計了基于目標檢測的完整輪廓提取方法,,將具有完整輪廓的魚類目標從圖像中提取出來作為分割階段的輸入,,使得整幅圖像的分割問題轉(zhuǎn)化為局部區(qū)域內(nèi)的分割問題;然后,,搭建Canny邊緣支持的深度學習分割網(wǎng)絡,,對區(qū)域內(nèi)的魚類實現(xiàn)較高精度圖像分割。實驗結果表明,,本文方法在以VGG-16,、ResNet-50和ResNet-101作為主干網(wǎng)絡的模型上的分割精度為81.75%、83.73%和85.66%,。其中,,以ResNet-101作為主干網(wǎng)絡的模型與Mask R-CNN、U-Net,、DeepLabv3相比,,分割精度分別高14.24、11.36,、9.45個百分點,。本文方法可以為魚類生物學信息的自動提取提供技術參考。

    Abstract:

    Segmenting fish objects from images is a key step in extracting fish biological information. In view of the low accuracy of current methods in fuzzy underwater fish image segmentation, a fish image segmentation method based on object detection and edge support was proposed. Firstly, the fish objects were cut out from the image by using the method of object detection, and the whole image segmentation was transformed into region segmentation. Then, the edge support method was used to segment the fish in the region, so as to further improve the segmentation accuracy of the model. The experimental results showed that the segmentation accuracy of the method was 81.75%, 83.73% and 85.66%, respectively by the models with VGG-16, ResNet-50 and ResNet-101 as the backbone network. The segmentation accuracy of the model with ResNet-101 as the backbone network was 14.24 percentage points, 11.36 percentage points and 9.45 percentage points higher than that of Mask R-CNN, U-Net and DeepLabv3 models, respectively. The method can be applied to the automatic extraction of fish biological information.

    參考文獻
    相似文獻
    引證文獻
引用本文

覃學標,黃冬梅,宋巍,賀琪,杜艷玲,徐慧芳.基于目標檢測及邊緣支持的魚類圖像分割方法[J].農(nóng)業(yè)機械學報,2023,54(1):280-286. QIN Xuebiao, HUANG Dongmei, SONG Wei, HE Qi, DU Yanling, XU Huifang. Fish Image Segmentation Method Based on Object Detection and Edge Support[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(1):280-286.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-02-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-01-10
  • 出版日期:
文章二維碼