ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

果實(shí)目標(biāo)深度學(xué)習(xí)識(shí)別技術(shù)研究進(jìn)展
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1002401)和國家自然科學(xué)基金項(xiàng)目(31701326)


Review on Deep Learning Technology for Fruit Target Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    機(jī)器視覺技術(shù)是果實(shí)目標(biāo)識(shí)別與定位研究的關(guān)鍵。傳統(tǒng)的目標(biāo)識(shí)別算法準(zhǔn)確率較低、檢測速度較慢,難以滿足實(shí)際生產(chǎn)的需求。近年來,深度學(xué)習(xí)方法在果實(shí)目標(biāo)識(shí)別與定位任務(wù)中表現(xiàn)出了優(yōu)良的性能。本文從數(shù)據(jù)集制備與果實(shí)目標(biāo)識(shí)別模型兩方面進(jìn)行綜述,總結(jié)了數(shù)據(jù)集制備相關(guān)的有監(jiān)督、半監(jiān)督和無監(jiān)督3種方法的特點(diǎn),按照深度學(xué)習(xí)算法的發(fā)展歷程,歸納了基于深度學(xué)習(xí)的果實(shí)目標(biāo)檢測和分割技術(shù)的常用方法及其實(shí)際應(yīng)用,輕量化模型的研究進(jìn)展及其應(yīng)用情況,基于深度學(xué)習(xí)的果實(shí)目標(biāo)識(shí)別技術(shù)面臨的問題和挑戰(zhàn)。最后指出基于深度學(xué)習(xí)的果實(shí)目標(biāo)識(shí)別方法未來發(fā)展趨勢為:通過弱監(jiān)督學(xué)習(xí)來降低模型對(duì)數(shù)據(jù)標(biāo)簽的依賴性,提高輕量化模型的檢測速度以實(shí)現(xiàn)果實(shí)目標(biāo)的實(shí)時(shí)準(zhǔn)確檢測。

    Abstract:

    Machine vision technology is the key of fruit target recognition and positioning. Traditional target recognition algorithm has low accuracy and slow detection speed, which is difficult to meet the needs of actual production. In recent years, deep learning methods have shown excellent performance in fruit target recognition and localization tasks. The fruit target recognition algorithm based on deep learning has the advantages of high detection progress and fast detection speed, so it is widely used in the fruit target recognition task under different scenes and has achieved many good achievements. The data set preparation and fruit target recognition models were reviewed. Firstly, the characteristics of supervised, semi-supervised and unsupervised methods related to dataset preparation were summarized. Secondly, according to the development process of deep learning algorithm, the common methods and practical applications of deep learning-based fruit target detection and segmentation technology were summarized, the previous research on the detection and segmentation of fruit objects such as apple, citrus and tomato under different natural scenes was summarized, and the research progress and application of lightweight model were summarized. Thirdly, the problems and challenges of deep learning-based fruit target recognition technology were summarized. In the end, the future development trend of deep learning-based fruit target recognition methods was pointed out, that was, weakly supervised learning would be used to reduce the dependence of models on data labels, and the detection speed of lightweight models would be improved to achieve real-time and accurate detection of fruit targets.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

宋懷波,尚鈺瑩,何東健.果實(shí)目標(biāo)深度學(xué)習(xí)識(shí)別技術(shù)研究進(jìn)展[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(1):1-19. SONG Huaibo, SHANG Yuying, HE Dongjian. Review on Deep Learning Technology for Fruit Target Recognition[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(1):1-19.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-01-10
  • 出版日期:
文章二維碼