ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于聲學(xué)特性的西瓜糖度檢測與分級系統(tǒng)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD1600101-06)和中國農(nóng)業(yè)大學(xué)2115人才工程項目


Watermelon Sugar Content Detection and Grading System Based on Acoustic Characteristics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    糖度是西瓜分級的重要指標(biāo)之一,,針對傳統(tǒng)西瓜檢測方法的弊端,,探討了聲學(xué)特性結(jié)合機(jī)器學(xué)習(xí)用于西瓜無損檢測與分級的可行性。設(shè)計了西瓜聲學(xué)檢測系統(tǒng),,采集了不同批次樣本的時域信號,。時域信號經(jīng)歸一化處理后,采用快速傅里葉變換得到頻域信號,并對其進(jìn)行去趨勢預(yù)處理,。采用主成分分析提取了頻域信號主成分,,其中前3個主成分累計方差貢獻(xiàn)率為95.32%,第1主成分和第2主成分對不同等級樣本具有可分性,。利用4種不同的機(jī)器學(xué)習(xí)算法建立了西瓜全變量分級模型,,驗證集分類準(zhǔn)確率均達(dá)到66%以上。使用穩(wěn)定競爭性自適應(yīng)加權(quán)算法提取了特征變量,,減少了約84%的變量數(shù),,使用優(yōu)化后的特征變量建立的分類模型,性能均得到了較好的提升,,其中支持向量機(jī)模型取得了最高的驗證集準(zhǔn)確率(95.56%),、F1分?jǐn)?shù)(96%)和Kappa系數(shù)(93%)。結(jié)果表明,,聲學(xué)特性結(jié)合機(jī)器學(xué)習(xí)的方法,,對西瓜進(jìn)行無損檢測和分級是可行的。該研究為西瓜無損檢測和分級提供了可行的技術(shù)方案,。

    Abstract:

    Sugar content is one of the important indicators for watermelon grading, for the drawbacks of traditional watermelon detection methods, the feasibility of acoustic characteristics combined with machine learning for non-destructive detection and grading of watermelon was investigated. The acoustic detection system of watermelon was designed and the time domain signals of different batches of samples were collected. After the time domain signal was normalized, the frequency domain signal was obtained by fast Fourier transform and pre-processed by detrending. The principal components of the frequency domain signal were extracted by using principal component analysis, the cumulative contribution rate of the first three principal components was 95.32%, the samples with different levels were differentiable using the first and second principal components. Watermelon all-variable grading models were developed by using four different machine learning algorithms, and the prediction set classification accuracies all reached over 66%. Feature variables were extracted by using stability competitive adapative reweighted sampling algorithm, which reduced the number of variables by about 84%. The performance of the classification models developed using the extracted feature variables were all improved, with the support vector machine model achieved the highest prediction set accuracy (95.56%), F1 score (96%) and Kappa coefficient (93%). The results indicated that acoustic characterization combined with machine learning was feasible for non-destructive detection and grading of watermelons. The research result can provide a feasible technical solution for non-destructive detection and grading of watermelon, and provide a reference for non-destructive detection and grading of other similar fruits and vegetables.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

左杰文,彭彥昆,李永玉,鄒文龍,趙鑫龍,孫晨.基于聲學(xué)特性的西瓜糖度檢測與分級系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(s1):316-323. ZUO Jiewen, PENG Yankun, LI Yongyu, ZOU Wenlong, ZHAO Xinlong, SUN Chen. Watermelon Sugar Content Detection and Grading System Based on Acoustic Characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s1):316-323.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼