ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于LightGBM的溫室番茄冠層CWSI預(yù)測(cè)模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

浙江省“尖兵”“領(lǐng)雁”研發(fā)攻關(guān)計(jì)劃項(xiàng)目(2022C02013)和國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1001903)


CWSI Prediction Model of Greenhouse Tomato Canopy Based on LightGBM Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為研究溫室內(nèi)番茄冠層作物水分脅迫指數(shù)(CWSI)問題,,通過布設(shè)多參數(shù)傳感器,實(shí)時(shí)獲取溫室內(nèi)外各環(huán)境參數(shù),。利用灰度關(guān)聯(lián)分析,,計(jì)算各環(huán)境參數(shù)與番茄冠層CWSI的關(guān)聯(lián)度,根據(jù)關(guān)聯(lián)度對(duì)環(huán)境參數(shù)進(jìn)行排序,,同時(shí)考慮對(duì)模型精度的影響,,最終從9個(gè)環(huán)境參數(shù)中選取7個(gè)作為模型輸入,建立基于LightGBM的溫室番茄冠層CWSI預(yù)測(cè)模型,。結(jié)合貝葉斯算法優(yōu)化其中的關(guān)鍵參數(shù),,將模型預(yù)測(cè)結(jié)果與通過Jones經(jīng)驗(yàn)公式計(jì)算出的CWSI做相關(guān)性分析,在相同的運(yùn)算環(huán)境下,,分別與GBRT和SVR模型對(duì)比,。試驗(yàn)結(jié)果表明,基于貝葉斯優(yōu)化LightGBM模型的決定系數(shù)(R2),、平均絕對(duì)誤差(MAE),、均方根誤差(RMSE)和運(yùn)算時(shí)間分別為0.9601、0.0218,、0.0314和0.0518s,,與GBRT和SVR模型相比,其R2分別提高2.14%和14.05%,,MAE分別降低0.0093和0.0612,,RMSE分別降低0.0097和0.0591,時(shí)間分別縮短0.0459s和0.0612s,。表明本研究提出的LightGBM模型性能更有效地提高了溫室番茄冠層CWSI的預(yù)測(cè)精度,,為實(shí)現(xiàn)溫室番茄按需灌溉提供了參考。

    Abstract:

    In order to study the prediction of crop water stress index (CWSI) of tomato canopy in greenhouse, through the deployment of multi parameter sensors, the environmental parameter inside and outside the greenhouse can be obtained in real time. Using gray correlation analysis, the correlation degree between environmental parameters and tomato canopy CWSI and the sub factor correlation coefficient between environmental parameters was calculated, the environmental parameters were sorted according to the correlation degree, and the impact on the accuracy of the model was considered. Finally, a total of seven parameters from nine environmental parameters were selected as the model input, and a prediction model of greenhouse tomato canopy crop water stress index (CWSI) based on LightGBM was established. Combined with Bayesian algorithm to optimize the key parameters, the correlation between the prediction results of the model and the CWSI value calculated by Jones empirical formula was analyzed. Under the same computing environment, it was compared with GBRT and SVR models respectively. The experimental results showed that the coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE) and operation time of the Bayesian optimized LightGBM model were 0.9601, 0.0218, 0.0314 and 0.0518s, respectively. Compared with GBRT and SVR models, R2 was increased by 2.14% and 14.05% respectively, MAE was reduced by 0.0093 and 0.0612 respectively, RMSE was reduced by 0.0097 and 0.0591 respectively, and the time was shortened by 0.0459s and 0.0612s respectively. It was showed that the LightGBM model proposed had better performance, which could effectively improve the prediction accuracy of greenhouse tomato canopy CWSI, and provide a strategy for realizing greenhouse tomato on-demand irrigation and a reference for water requirement research.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫泉,耿磊,趙奇慧,楊佳昊,呂平,李莉.基于LightGBM的溫室番茄冠層CWSI預(yù)測(cè)模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(s1):270-276,,308. SUN Quan, GENG Lei, ZHAO Qihui, YANG Jiahao, Lü Ping, LI Li. CWSI Prediction Model of Greenhouse Tomato Canopy Based on LightGBM Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s1):270-276,,308.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼