ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于三維點(diǎn)云的群體櫻桃樹冠層光照分布預(yù)測(cè)模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省自然科學(xué)基金項(xiàng)目(ZR2020MC084)


Light Distribution Prediction Model of Group Cherry Trees Canopy Based on 3D Point Cloud
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    合理的果樹冠層結(jié)構(gòu)和栽培密度可提高其冠層內(nèi)光截獲量,,對(duì)提升果實(shí)產(chǎn)量和質(zhì)量有重要影響,。本文以細(xì)紡錘形櫻桃樹為研究對(duì)象,構(gòu)建了基于三維點(diǎn)云的群體櫻桃樹冠層光照分布預(yù)測(cè)模型,。使用Azure Kinect DK相機(jī)獲取群體櫻桃樹三維點(diǎn)云數(shù)據(jù),,通過點(diǎn)云數(shù)據(jù)預(yù)處理得到完整的群體櫻桃樹三維點(diǎn)云數(shù)據(jù)。在冠層尺度內(nèi),,對(duì)櫻桃樹冠層點(diǎn)云數(shù)據(jù)進(jìn)行分層,,提取不同區(qū)域的點(diǎn)云顏色特征。提出基于Delaunay三角化凹包算法的點(diǎn)云投影面積計(jì)算方法,,通過凹包邊界點(diǎn)提取和向量積叉乘,,計(jì)算不同區(qū)域的點(diǎn)云投影面積。以點(diǎn)云顏色特征和相對(duì)投影面積特征為輸入,,以實(shí)測(cè)相對(duì)光照強(qiáng)度為輸出,,建立群體櫻桃樹冠層光照分布預(yù)測(cè)模型,。試驗(yàn)結(jié)果表明,該模型能夠較為準(zhǔn)確地預(yù)測(cè)櫻桃樹冠層內(nèi)的光照分布,,預(yù)測(cè)值與實(shí)際值決定系數(shù)平均值為0.885,,均方根誤差為0.0716。研究結(jié)果可為櫻桃樹合理的種植密度管理及櫻桃樹休眠期自動(dòng)化剪枝等提供技術(shù)支持,。

    Abstract:

    A reasonable canopy structure and cultivation density of fruit trees can increase the amount of light interception within their canopies, which has an important impact on improving the yield and quality of fruit. A 3D point cloudbased model for predicting the canopy light distribution of group cherry trees was proposed by using a thin spindleshaped cherry tree as the research object. Firstly, the Azure Kinect DK camera was used to obtain the 3D point cloud data of the group cherry trees, and the complete 3D point cloud data of the group cherry trees were obtained through point cloud data preprocessing. Secondly, according to the actual cherry tree canopy segmentation method, the point cloud data of cherry tree canopies were point cloud stratified and the point cloud colour features of different regions were extracted. Again, a point cloud projection area calculation method based on the Delaunay triangulated concave packet algorithm was proposed to calculate the point cloud projection area of different regions through concave packet boundary point extraction and vector product fork multiplication. Finally, a model for predicting the light distribution in the canopy of group cherry trees was developed, which was a random forest model with point cloud colour characteristics and relative projected area characteristics as input and measured relative light intensity as output. The experimental results showed that the model was able to predict the light distribution in the canopy of cherry trees with a mean coefficient of determination of 0.885 and root mean square error of 0.0716. The research results can provide technical support for reasonable planting density management and automated pruning of cherry trees during dormancy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉剛,尹一涵,鄭智源,周少清,李紅娟,侯沖.基于三維點(diǎn)云的群體櫻桃樹冠層光照分布預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(s1):263-269. LIU Gang, YIN Yihan, ZHENG Zhiyuan, ZHOU Shaoqing, LI Hongjuan, HOU Chong. Light Distribution Prediction Model of Group Cherry Trees Canopy Based on 3D Point Cloud[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s1):263-269.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼