ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v5的自然環(huán)境下櫻桃果實(shí)識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省自然科學(xué)基金項(xiàng)目(ZR2020MC084)


Cherry Fruit Detection Method in Natural Scene Based on Improved YOLO v5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高對(duì)櫻桃果實(shí)識(shí)別的準(zhǔn)確率,,提升果園自動(dòng)采摘機(jī)器人的工作效率,,使用采集到的櫻桃原始圖像以及其搭配不同數(shù)據(jù)增強(qiáng)方式得到的數(shù)據(jù)圖像共1816幅建立數(shù)據(jù)集,按照8∶2將數(shù)據(jù)集劃分成訓(xùn)練集與測(cè)試集,?;谏疃葘W(xué)習(xí)網(wǎng)絡(luò),利用YOLO v5模型分別對(duì)不同數(shù)據(jù)增強(qiáng)方式以及組合增強(qiáng)方式擴(kuò)增后的櫻桃數(shù)據(jù)集進(jìn)行識(shí)別檢測(cè),,結(jié)果表明離線增強(qiáng)與在線增強(qiáng)均對(duì)模型精度提升有一定的正向促進(jìn)作用,,其中采用離線數(shù)據(jù)增強(qiáng)策略能夠顯著且穩(wěn)定的增加檢測(cè)精度,在線數(shù)據(jù)增強(qiáng)策略能夠小幅度提高檢測(cè)精度,,同時(shí)使用離線增強(qiáng)以及在線增強(qiáng)能夠最大幅度的提升平均檢測(cè)精度,。針對(duì)櫻桃果實(shí)之間相互遮擋以及圖像中的小目標(biāo)櫻桃檢測(cè)難等導(dǎo)致自然環(huán)境下櫻桃果實(shí)檢測(cè)精度低的問(wèn)題,本文將YOLO v5的骨干網(wǎng)絡(luò)進(jìn)行改動(dòng),,增添具有注意力機(jī)制的Transformer模塊,,Neck結(jié)構(gòu)由原來(lái)的PAFPN改成可以進(jìn)行雙向加權(quán)融合的BiFPN,Head結(jié)構(gòu)增加了淺層下采樣的P2模塊,,提出一種基于改進(jìn)YOLO v5的自然環(huán)境下櫻桃果實(shí)的識(shí)別網(wǎng)絡(luò),。實(shí)驗(yàn)結(jié)果表明:相比于其他已有模型以及單一結(jié)構(gòu)改進(jìn)后的YOLO v5模型,本文提出的綜合改進(jìn)模型具有更高的檢測(cè)精度,,使平均精度均值2提高了29個(gè)百分點(diǎn),。結(jié)果表明該方法有效的增強(qiáng)了識(shí)別過(guò)程中特征融合的效率和精度,顯著地提高了櫻桃果實(shí)的檢測(cè)效果,。同時(shí),,本文將訓(xùn)練好的網(wǎng)絡(luò)模型部署到安卓(Android)平臺(tái)上。該系統(tǒng)使用簡(jiǎn)潔,,用戶設(shè)備環(huán)境要求不高,,具有一定的實(shí)用性,,可在大田環(huán)境下對(duì)櫻桃果實(shí)進(jìn)行準(zhǔn)確檢測(cè),,能夠很好地滿足實(shí)時(shí)檢測(cè)櫻桃果實(shí)的需求,也為自動(dòng)采摘等實(shí)際應(yīng)用奠定了基礎(chǔ),。

    Abstract:

    In order to improve the accuracy of cherry fruit recognition and the working efficiency of orchard automatic picking robot, totally 1816 sets of cherry original images collected in Yantai Academy of Agricultural Sciences and data images obtained with different data enhancement methods were used to establish the data set, the data set was divided into training set and test set according to rate of 8∶2, and YOLO v5 model was used to identify and detect cherry data sets enhanced by different data enhancement methods and combined enhancement methods based on the in-depth learning network. The results showed that offline enhancement and online enhancement had a certain positive effect on the improvement of model accuracy. The offline data enhancement strategy could significantly and stably increase the detection accuracy, and the online data enhancement strategy could slightly improve the detection accuracy. Using the combination of offline enhancement and online enhancement at the same time could greatly improve the average detection accuracy. In view of the mutual occlusion between cherry fruits and the difficulty in detecting small cherry targets in the picture, the detection accuracy of cherry fruits in the natural environment was low, the backbone network of YOLO v5 was changed, the transformer module with attention mechanism was added, and the neck structure was changed from the original pafpn to bifpn which could carry out two-way weighted fusion. The P2 module of shallow down sampling was added to the head structure. The experimental results showed that compared with other existing models and the improved YOLO v5 model with a single structure, the comprehensive improved model proposed had the highest detection accuracy, and the [email protected]∶0.95 was increased by 2.9 percentage points. The results showed that this method effectively enhanced the efficiency and accuracy of feature fusion in the recognition process, and significantly improved the detection effect of cherry fruit. At the same time, the trained network model was deployed on the Android platform. The system was simple and clear to use, and the requirements of user equipment environment were not high. Therefore, the system had certain practicability. It could detect cherry fruit in real time and accurately in the field environment, which laid a foundation for practical applications such as automatic service picking in the future.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張志遠(yuǎn),羅銘毅,郭樹(shù)欣,劉剛,李淑平,張瑤.基于改進(jìn)YOLO v5的自然環(huán)境下櫻桃果實(shí)識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(s1):232-240. ZHANG Zhiyuan, LUO Mingyi, GUO Shuxin, LIU Gang, LI Shuping, ZHANG Yao. Cherry Fruit Detection Method in Natural Scene Based on Improved YOLO v5[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s1):232-240.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼