ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于自適應(yīng)系數(shù)卡爾曼濾波的農(nóng)業(yè)移動(dòng)機(jī)器人組合定位
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFB1307502)和國(guó)家自然科學(xué)基金項(xiàng)目(61973040)


Adaptive-coefficient Kalman Filter Based Combined Positioning Algorithm for Agricultural Mobile Robots
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于全球?qū)Ш叫l(wèi)星系統(tǒng)(Global navigation satellite system,,GNSS)的定位導(dǎo)航技術(shù)在半結(jié)構(gòu)化、半開(kāi)放式農(nóng)業(yè)應(yīng)用場(chǎng)景的部分區(qū)域,,可能由于存在作物遮擋而導(dǎo)致GNSS接收信號(hào)出現(xiàn)短暫丟失的情況,,進(jìn)而影響機(jī)器人定位導(dǎo)航精度,甚至對(duì)作物和工作人員造成傷害,。針對(duì)這一問(wèn)題,,本文開(kāi)展了農(nóng)業(yè)遮擋環(huán)境下的GNSS與慣性導(dǎo)航系統(tǒng)(Inertial navigation system,INS)的組合定位方法研究,。搭建了用于多傳感器定位導(dǎo)航實(shí)驗(yàn)的農(nóng)業(yè)機(jī)器人系統(tǒng),,該系統(tǒng)由履帶式移動(dòng)平臺(tái)、GNSS,、INS等硬件和ROS(Robot operation system)操作系統(tǒng),、遠(yuǎn)程操控界面等軟件構(gòu)成。提出了引入自適應(yīng)系數(shù)的GNSS/INS組合定位卡爾曼濾波算法,當(dāng)GNSS無(wú)法進(jìn)行差分定位或定位數(shù)據(jù)產(chǎn)生躍變時(shí),,通過(guò)自適應(yīng)卡爾曼濾波能夠切換到INS定位,,從而實(shí)現(xiàn)機(jī)器人自身位置、姿態(tài)的最優(yōu)估計(jì),。在典型農(nóng)業(yè)遮擋場(chǎng)景(果園)進(jìn)行了實(shí)地組合定位實(shí)驗(yàn),,并通過(guò)GNSS單通道定位、INS單通道定位,、常規(guī)卡爾曼濾波融合定位,、引入自適應(yīng)系數(shù)的卡爾曼濾波定位等4種定位方法的對(duì)比,驗(yàn)證了本文提出算法的有效性?,F(xiàn)場(chǎng)實(shí)驗(yàn)表明:定位過(guò)程中,,當(dāng)100m×20m的實(shí)驗(yàn)區(qū)域內(nèi)出現(xiàn)30m×6m的高遮擋區(qū)域時(shí),與GNSS定位信息測(cè)量方法,、INS航跡推算定位方法以及常規(guī)卡爾曼濾波組合定位方法相比,,自適應(yīng)系數(shù)卡爾曼濾波組合定位方法定位精度分別提升62.1%、48.5%,、47.7%,。

    Abstract:

    GNSS-based positioning and navigation has been widely used for agricultural robots in open unmanned farms. However, for the applications of semi-structured and semi-open agricultural scenarios, there may be temporary loss of GNSS received signals caused by occlusion of canopies in some areas, which will affect the positioning and navigation accuracy of robots and even harm crops or farmers. To solve this problem, a combined positioning method of GNSS and INS under the occlusion environment of agriculture was studied. The main work consisted of three parts: a mobile agricultural robot system was build up for the experiments of multi-sensor-based positioning and navigation, which consisted of hardware (track-layer mobile platform, GNSS receivers and INS, etc.) and software (ROS, remote control interface, etc.);an adaptive-coefficient Kalman filter based combined positioning algorithm was proposed. When the GNSS signal was unstable or denied, the new algorithm can switch to INS positioning adaptively based on Kalman filter, which carried out the optimal estimation for the robots’ location and gesture;experiments of the proposed combined positioning algorithm were conducted under practical scenes of agriculture, in which four different positioning methods (GNSS only, INS only, Kalman filter based combined positioning, and adaptive-coefficient Kalman filter based combined positioning) were compared to validate the effectiveness of the algorithm. Field experiments showed that in the process of combined positioning, compared with GNSS positioning, INS positioning and conventional Kalman filter fusion positioning, the positioning accuracy of adaptive-coefficient Kalman filter in the 30m×6m high shaded area of 100m×20m experimental area was improved by 62.1%,48.5% and 47.7%, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

邱權(quán),胡青含,樊正強(qiáng),孫娜,張喜海.基于自適應(yīng)系數(shù)卡爾曼濾波的農(nóng)業(yè)移動(dòng)機(jī)器人組合定位[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(s1):36-43. QIU Quan, HU Qinghan, FAN Zhengqiang, SUN Na, ZHANG Xihai. Adaptive-coefficient Kalman Filter Based Combined Positioning Algorithm for Agricultural Mobile Robots[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s1):36-43.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-05-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼