ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合字詞語義信息的獼猴桃種植領(lǐng)域命名實(shí)體識(shí)別研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100601),、陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021NY-138)和中央高?;究蒲袠I(yè)務(wù)專項(xiàng)資金項(xiàng)目(2452019064)


Kiwifruit Planting Entity Recognition Based on Character and Word Information Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)獼猴桃種植領(lǐng)域命名實(shí)體識(shí)別任務(wù)中實(shí)體詞復(fù)雜度較高,,識(shí)別精確率較低的問題,,提出一種融合字詞語義信息的獼猴桃種植實(shí)體識(shí)別方法,。以BiGRU-CRF為基本模型,,融合詞級(jí)別和字符級(jí)別的信息。在詞級(jí)別上,,通過引入詞集信息,,并使用多頭自注意力(Multiple self-attention mechanisms,MHA)調(diào)整詞集中不同詞的權(quán)重,;同時(shí)使用注意力機(jī)制忽略不可靠的詞集,,將注意力集中在重要的詞集上,從而提高實(shí)體識(shí)別效果,;在字符級(jí)別上,,引入無監(jiān)督的基于轉(zhuǎn)換器的雙向編碼表征(Bidirectional encoder representations form transformers,BERT)預(yù)訓(xùn)練模型增強(qiáng)字的語義表示,。在包含12477條標(biāo)注樣本和7個(gè)類別實(shí)體的獼猴桃種植領(lǐng)域自制語料上進(jìn)行了實(shí)驗(yàn),,結(jié)果表明,本文模型與SoftLexicon模型相比,,F(xiàn)1值提高1.58個(gè)百分點(diǎn),。此外,本文模型在公開數(shù)據(jù)集ResumeNER上與Lattice-LSTM,、WC-LSTM等模型進(jìn)行實(shí)驗(yàn)對(duì)比取得了最佳效果,,F(xiàn)1值達(dá)到96.17%,表明本文模型具有一定的泛化能力,。

    Abstract:

    Aiming at the problem of high complexity of real words and low recognition accuracy in the named entity recognition task of kiwifruit planting field, a entity recognition method of kiwifruit planting integrating character and word information was proposed. Based on BiGRU-CRF model, word level and character level information were fused. At the word level, by introducing word set information and using multiple self-attention mechanisms (MHA) to adjust the weights of different words in the word set. At the same time, attention mechanism was used to ignore the unreliable word sets and focus on the important word sets to improve the entity recognition effect. At the character level, the unsupervised bidirectional encoder representations form transformers (BERT) pre-training model was introduced to enhance the semantic representation of words. Experiments were conducted on a homemade corpus in the kiwifruit cultivation domain containing 12477 annotated samples and seven categories of entities, and the results showed that the F1 value of the model was improved by 1.58 percentage points compared with the SoftLexicon model. In addition, the experimental comparison of the model ResumeNER with Lattice-LSTM, WC-LSTM and other models in the open data set ResumeNER was carried out, and the best recognition effect was achieved. The F1 value reached 96.17%, indicating that the method proposed had certain generalization ability.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李書琴,張明美,劉斌.融合字詞語義信息的獼猴桃種植領(lǐng)域命名實(shí)體識(shí)別研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(12):323-331. LI Shuqin, ZHANG Mingmei, LIU Bin. Kiwifruit Planting Entity Recognition Based on Character and Word Information Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(12):323-331.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-24
  • 出版日期:
文章二維碼