ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)ShuffleNetV2模型的荔枝病蟲害識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61863011、32071912),、廣州市基礎(chǔ)研究計(jì)劃項(xiàng)目(202102080337),、廣州市科技計(jì)劃項(xiàng)目(202002020016)和廣州市基礎(chǔ)研究計(jì)劃基礎(chǔ)與應(yīng)用基礎(chǔ)研究項(xiàng)目(202102080337)


Litchi Diseases and Insect Pests Identification Method Based on Improved ShuffleNetV2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為更好地助力荔枝病蟲害防治工作,推進(jìn)荔枝產(chǎn)業(yè)健康發(fā)展,,本文以所收集的荔枝病蟲害圖像數(shù)據(jù)集為研究對象,,基于輕量型卷積神經(jīng)網(wǎng)絡(luò)ShuffleNetV2模型,提出一個(gè)高精度,、穩(wěn)定且適用于荔枝病蟲害的識別模型SHTNet,。首先,在ShuffleNetV2模型中引入注意力機(jī)制SimAM,不額外增加網(wǎng)絡(luò)參數(shù)的同時(shí),,增強(qiáng)重要特征的有效提取,,強(qiáng)化荔枝病蟲害特征并抑制背景特征。其次,,在保證模型識別精度的同時(shí),,采用激活函數(shù)Hardswish減少網(wǎng)絡(luò)模型參數(shù)量,使網(wǎng)絡(luò)更加輕量化,。最后,,在改進(jìn)模型上采用遷移學(xué)習(xí)方法,將源數(shù)據(jù)(Mini-ImageNet數(shù)據(jù)集)學(xué)習(xí)到的知識遷移到目標(biāo)數(shù)據(jù)(數(shù)據(jù)增強(qiáng)后的荔枝病蟲害圖像數(shù)據(jù)集),,增強(qiáng)模型識別不同的荔枝病蟲害種類的適應(yīng)性,。實(shí)驗(yàn)結(jié)果表明,與原始ShuffleNetV2模型相比,,本文提出的荔枝病蟲害識別模型SHTNet的準(zhǔn)確率達(dá)到84.9%,,提高8.8個(gè)百分點(diǎn);精確率達(dá)到78.1%,,提高9個(gè)百分點(diǎn),;召回率達(dá)到73.2%,提高8.8個(gè)百分點(diǎn),;F1值達(dá)到75.8%,,提高10.2個(gè)百分點(diǎn);且綜合性能明顯優(yōu)于ResNet34,、ResNeXt50和MobileNetV3-large模型,。本文提出的荔枝病蟲害識別模型具有較高的識別精度和較強(qiáng)的泛化能力,為荔枝病蟲害實(shí)時(shí)在線識別奠定了技術(shù)基礎(chǔ),。

    Abstract:

    Litchi diseases and insect pests are not only various, but also have a long onset cycle. The difficulty in prevention and control is an important limiting factor affecting the production and quality of litchi. To better assist the prevention and control of diseases and insect pests in litchi and promote the healthy development of the litchi industry, a high-precision, stable and suitable identification model SHTNet was proposed for the collected image data set of litchi diseases and insect pests. Firstly, the attention mechanism SimAM was introduced into the lightweight convolutional neural network ShuffleNetV2 model. Without additional network parameters, the effective extraction of important features was improved to enhance the characteristics of litchi pests and diseases and suppress background features. Secondly, while ensuring the accuracy of model recognition, the activation function Hardswish was used to reduce the amount of the network model parameters, making the network more lightweight. Thirdly, the transfer learning method was adopted on the improved model to transfer the knowledge learned from the source data (Mini-ImageNet data set) to the target data (the litchi diseases and insect pests image data set after data enhancement), enhancing the model’s adaptability to recognize different types of litchi diseases and insect pests. The experimental results showed that the accuracy of the proposed model SHTNet reached 84.9%, which was improved by 8.8 percentage points; the precision rate reached 78.1% with an increase of 9 percentage points; the recall rate was increased by 8.8 percentage points to 73.2%; the F1 was 75.8% with an increase of 10.2 percentage points. This ultimately improved model comprehensive performance, which was superior to that of ResNet34, ResNeXt50 and MobileNetV3-large models. Therefore, the final model proposed SHTNet had better robustness and strong generalization ability, laying a solid technical foundation for diseases and insect pests of litchi real-time online identification application platform implementation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

彭紅星,何慧君,高宗梅,田興國,鄧倩婷,咸春龍.基于改進(jìn)ShuffleNetV2模型的荔枝病蟲害識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(12):290-300. PENG Hongxing, HE Huijun, GAO Zongmei, TIAN Xingguo, DENG Qianting, XIAN Chunlong. Litchi Diseases and Insect Pests Identification Method Based on Improved ShuffleNetV2[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(12):290-300.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-05-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-06-27
  • 出版日期:
文章二維碼