ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)ByteTrack算法的群養(yǎng)生豬行為識(shí)別與跟蹤技術(shù)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

廣東省科技計(jì)劃項(xiàng)目(2019A050510034),、廣州市重點(diǎn)項(xiàng)目(202206010091)和中國(guó)“互聯(lián)網(wǎng)+”大學(xué)生創(chuàng)新創(chuàng)業(yè)大賽項(xiàng)目(202110564025)


Behavior Recognition and Tracking of Group-housed Pigs Based on Improved ByteTrack Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    群養(yǎng)生豬行為的識(shí)別與跟蹤是智能養(yǎng)殖中監(jiān)測(cè)豬只健康的關(guān)鍵技術(shù)。為在豬只重疊與遮擋復(fù)雜場(chǎng)景中,,實(shí)現(xiàn)群養(yǎng)生豬行為識(shí)別與穩(wěn)定跟蹤,,提出了改進(jìn)ByteTrack算法。首先,,采用YOLOX-X目標(biāo)檢測(cè)器實(shí)現(xiàn)群養(yǎng)生豬檢測(cè),然后,,提出改進(jìn)ByteTrack多目標(biāo)跟蹤算法,。該算法改進(jìn)包括:設(shè)計(jì)并實(shí)現(xiàn)BYTE數(shù)據(jù)關(guān)聯(lián)的軌跡插值后處理策略,降低遮擋造成的IDs錯(cuò)誤變換,,穩(wěn)定跟蹤性能,;設(shè)計(jì)適合群養(yǎng)生豬的檢測(cè)錨框,將YOLOX-X檢測(cè)算法中的行為類別信息引入跟蹤算法中,,實(shí)現(xiàn)群養(yǎng)生豬行為跟蹤,。改進(jìn)ByteTrack算法的MOTA為96.1%,IDF1為94.5%,,IDs為9,,MOTP為0.189,;與ByteTrack、DeepSORT和JDE方法相比,,在MOTA與IDF1上均具有顯著提升,,并有效減少了IDs。改進(jìn)ByteTrack算法在群養(yǎng)環(huán)境下能實(shí)現(xiàn)穩(wěn)定ID的豬只行為跟蹤,,能夠?yàn)闊o(wú)接觸式自動(dòng)監(jiān)測(cè)生豬提供技術(shù)支持,。

    Abstract:

    Behavior recognition and tracking of group-housed pigs is the key technology to monitor the pigs’ health in smart farming. In real farming scenarios, the pigs’ overlapping occlusion and illumination change make it still challenging to automatically track the behavior of group-housed pigs. An improved ByteTrack algorithm of behavior tracking was proposed based on YOLOX-X for pig behavior recognition and stable tracking to avoid influence due to the complex scene of pig overlap and occlusion. The algorithm improvement included two parts. One was that the trajectory interpolation post-processing strategy based on BYTE data association was designed and implemented to improve the tracking performance. This improvement reduced the error IDs caused by occlusion and enhanced the stability of tracking. The other was to design a detection anchor frame suitable for group-housed pigs and introduce the behavior category information in the YOLOX-X detection algorithm to realize the behavior tracking of group-housed pigs.The experimental results showed that the improved ByteTrack algorithm achieved a favorable performance with MOTA of 96.1%, IDF1 of 94.5%, IDs of 9 and MOTP of 0.189. Compared with the basic ByteTrack, DeepSORT and JDE methods, it had a significant improvement in MOTA and IDF1, and effectively reduced IDs, which showed that the improved ByteTrack algorithm was able to achieve behavior tracking of grouphoused pigs with stable ID tracking. The method can provide technical support for automatic monitoring of pigs with no contact.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

涂淑琴,湯寅杰,李承桀,梁云,曾揚(yáng)晨,劉曉龍.基于改進(jìn)ByteTrack算法的群養(yǎng)生豬行為識(shí)別與跟蹤技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(12):264-272. TU Shuqin, TANG Yinjie, LI Chengjie, LIANG Yun, ZENG Yangchen, LIU Xiaolong. Behavior Recognition and Tracking of Group-housed Pigs Based on Improved ByteTrack Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(12):264-272.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-01
  • 出版日期:
文章二維碼