ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

用于體質(zhì)量估測(cè)的黃羽雞姿態(tài)關(guān)鍵幀識(shí)別與分析
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

浙江省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021C02026)


Posture Key Frame Recognition and Analysis for Weight Estimation of Yellow-feathered Chickens
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    體質(zhì)量是評(píng)價(jià)家禽生長(zhǎng)狀況的關(guān)鍵指標(biāo),,但家禽姿態(tài)的變化會(huì)影響體質(zhì)量估測(cè)精度。本研究提出了一種SE-ResNet18+fLoss網(wǎng)絡(luò)對(duì)平養(yǎng)模式下黃羽雞姿態(tài)關(guān)鍵幀進(jìn)行識(shí)別,,融合了注意力機(jī)制SE模塊和殘差結(jié)構(gòu),,并改進(jìn)了損失函數(shù),通過(guò)Focal Loss監(jiān)督信號(hào)來(lái)解決樣本不平衡問(wèn)題,,同時(shí)引入梯度加權(quán)類激活圖對(duì)末端分類規(guī)則的合理性進(jìn)行解釋。利用4295幅雞只圖像構(gòu)建數(shù)據(jù)集,,測(cè)試集中雞只的站立,、低頭、展翅,、梳理羽毛,、坐姿和遮擋6類姿態(tài)情況識(shí)別的F1值分別為94.34%,、91.98%、76.92%,、93.75%,、100%和93.68%;黃羽雞姿態(tài)關(guān)鍵幀的識(shí)別精確率為97.38%,、召回率為97.22%,、F1值為97.26%、識(shí)別速度為19.84f/s,,識(shí)別精度,、召回率和F1值均優(yōu)于ResNet18、MobileNet18 V2和SE-ResNet18網(wǎng)絡(luò),,在提高黃羽雞姿態(tài)關(guān)鍵幀識(shí)別精度的同時(shí)保證了實(shí)時(shí)性,,為準(zhǔn)確估測(cè)家禽體質(zhì)量提供了技術(shù)支持。

    Abstract:

    Body weight is a key indicator to evaluate the growth condition of poultry. However, the variation of poultry posture will affect the accuracy of weight estimation. SE-ResNet18+fLoss network was proposed to detect the posture key frames of floor-reared yellow-feathered chickens. The attention mechanism SE module and residual structure were integrated. And the Focal Loss was added to solve the problem of sample imbalance. In addition, the Gradient-weighted Class Activation Mapping was introduced to explain the rationality of the end classification rule. The dataset was constructed by 4295 images of yellow-feathered chickens. The F1-score of the SE-ResNet18+fLoss model on the test set for the chicken situations recognition of six classes: standing, bowing head, spreading wing, grooming feather, sitting and occlusion were 94.34%, 91.98%, 76.92%, 93.75%, 100% and 93.68%, respectively. Towards the detection of key posture frames on chickens, the accuracy, recall, F1-score and detection speed were 97.38%, 97.22% 97.26% and 19.84f/s, respectively. And the detection accuracy, recall and F1-score were better than those of ResNet18, MobileNet V2 and SE-ResNet18 networks. The study ensured real-time performance while improving the accuracy of key posture frame recognition, which provided technical support for accurate estimation of poultry weight.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張小敏,徐濤,張延寧,高源,朱逸航,饒秀勤.用于體質(zhì)量估測(cè)的黃羽雞姿態(tài)關(guān)鍵幀識(shí)別與分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(12):254-263. ZHANG Xiaomin, XU Tao, ZHANG Yanning, GAO Yuan, ZHU Yihang, RAO Xiuqin. Posture Key Frame Recognition and Analysis for Weight Estimation of Yellow-feathered Chickens[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(12):254-263.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-08-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-19
  • 出版日期:
文章二維碼