ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CT圖像和RAUNet-3D的玉米籽粒三維結(jié)構(gòu)測量
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

北京市農(nóng)林科學(xué)院作物表型協(xié)同創(chuàng)新中心項(xiàng)目(KJCX201917),、〖JP2〗財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)(CARS-02)、〖JP〗北京市農(nóng)林科學(xué)院創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20180423),、北京市農(nóng)林科學(xué)院改革與發(fā)展項(xiàng)目和國家自然科學(xué)基金項(xiàng)目(U21A20205)


Three-dimensional Structure Measurement of Corn Kernel Based on CT Image and RAUNet-3D Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    玉米籽粒構(gòu)成和精細(xì)結(jié)構(gòu)與玉米產(chǎn)量及品質(zhì)直接相關(guān),。本文提出一種基于CT圖像的玉米籽粒三維結(jié)構(gòu)自動測量方法,快速提取,、統(tǒng)計(jì)玉米籽粒成分和結(jié)構(gòu)性狀,,評估不同玉米品種籽粒間性狀差異。首先,,利用Micro-CT獲取批量玉米籽粒CT圖像,,通過Watershed算法準(zhǔn)確分割出單顆籽粒,;進(jìn)而,設(shè)計(jì)基于注意力機(jī)制RAUNet-3D網(wǎng)絡(luò)準(zhǔn)確提取出籽粒胚,;最后,,建立自動化玉米籽粒表型管道,計(jì)算籽粒,、胚,、胚乳和空腔的共23項(xiàng)性狀,用于玉米籽粒性狀分析和品種鑒定,。選取4個(gè)玉米品種籽粒(登海605,、京科968、先正達(dá)408和農(nóng)華5號)共120顆籽粒進(jìn)行驗(yàn)證,,結(jié)果表明籽粒CT掃描成像效率提高到1min/粒,,籽粒表型提取效率為10s/粒,胚分割精度可達(dá)93.4%,,粒長,、粒寬和粒厚的R2分別為0.902、0.926和0.904,,籽粒品種分類精度達(dá)90.4%,。本文方法實(shí)現(xiàn)了玉米籽粒及其胚、胚乳,、空腔三維結(jié)構(gòu)無損,、快速測量,提取的性狀能夠表征不同玉米品種籽粒間表型差異,,為開展大規(guī)模玉米籽粒三維表型鑒定奠定了基礎(chǔ),。

    Abstract:

    The composition and fine structure of corn kernel are directly related to yield and quality of maize. An automatic measurement method for threedimensional structures of corn kernels based on CT images was proposed, which could quickly extract and analyze the components and structural traits of corn kernel, and the differences of traits among different maize varieties were evaluated. Firstly, CT images of batch corn kernels were obtained by Micro-CT, and single kernel was accurately segmented by using Watershed algorithm. Furthermore, the improved RAUNet-3D network based on attention mechanism was designed to accurately extract kernel embryos. Finally, an automatic phenotype pipeline was established to calculate 23 traits related to corn kernel, embryo, endosperm and cavity, which were used for traits analysis and variety identification of maize kernel. A total of 120 kernels of four corn varieties (Denghai 605, Jingke 968, Syngenta 408 and Nonghua 5) were selected for performance verification. The experimental results showed that the data acquirement efficiency was improved to about 1min per kernel, and the efficiency of algorithm pipeline was about 10s per kernel, and the segmentation accuracy of kernel embryos reached 93.4%. The determinant coefficients of kernel length, width and thickness were 0.902, 0.926 and 0.904, respectively. The proposed method could quickly and non-destructively measure the three-dimensional structure of corn kernel and its components, and the extracted traits could represent the phenotypic differences among different corn varieties, which laid a foundation for large-scale three-dimensional phenotypic measurement and identification of corn kernels.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜建軍,李大壯,廖生進(jìn),盧憲菊,郭新宇,趙春江.基于CT圖像和RAUNet-3D的玉米籽粒三維結(jié)構(gòu)測量[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(12):244-253,289. DU Jianjun, LI Dazhuang, LIAO Shengjin, LU Xianju, GUO Xinyu, ZHAO Chunjiang. Three-dimensional Structure Measurement of Corn Kernel Based on CT Image and RAUNet-3D Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(12):244-253,289.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-01-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-22
  • 出版日期:
文章二維碼