ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合田間水熱因子的甘蔗產(chǎn)量GA-BP預(yù)測(cè)模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

海南省自然科學(xué)基金面上項(xiàng)目(322MS118)和海南省自然科學(xué)基金青年基金項(xiàng)目(322QN375)


Sugarcane Yield GA-BP Prediction Model Incorporating Field Water and Heat Factors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    甘蔗產(chǎn)量預(yù)測(cè)對(duì)于制定甘蔗生長(zhǎng)期間的精準(zhǔn)管理決策具有重要意義,。遺傳算法(Genetic algorithm,GA)優(yōu)化神經(jīng)網(wǎng)絡(luò)可以提高預(yù)測(cè)效率及預(yù)測(cè)精度,,通過(guò)高速計(jì)算快速找到最優(yōu)解,。基于湛江觀測(cè)實(shí)驗(yàn)站2011—2020年間田間物聯(lián)網(wǎng)獲取的氣象因子(大氣相對(duì)濕度,、大氣溫度,、降雨量)、田間水熱因子及甘蔗產(chǎn)量,,采用BP神經(jīng)網(wǎng)絡(luò)及GA-BP神經(jīng)網(wǎng)絡(luò)模型對(duì)所選地區(qū)甘蔗產(chǎn)量進(jìn)行預(yù)測(cè)與相關(guān)性分析,。結(jié)果表明,通過(guò)Pearson及Spearman相關(guān)系數(shù)可知,,甘蔗產(chǎn)量與月土壤最高溫度,、月土壤最低溫度、月土壤平均溫度,、月大氣最高溫度,、月大氣平均溫度、月大氣平均相對(duì)濕度為極顯著相關(guān),,相關(guān)系數(shù)高于0.7,,與月土壤平均含水率,、月降雨量顯著相關(guān),,與月大氣最低溫度相關(guān)性較弱。GA-BP神經(jīng)網(wǎng)絡(luò)模型對(duì)甘蔗產(chǎn)量的預(yù)測(cè)精度明顯高于BP神經(jīng)網(wǎng)絡(luò)模型,,R2達(dá)到0.8428,,MAPE僅為0.90%,RMSE為1.10t/hm2,,預(yù)測(cè)值與試驗(yàn)值之間擬合程度較高,,V型交叉驗(yàn)證結(jié)果表明模型預(yù)測(cè)結(jié)果準(zhǔn)確穩(wěn)定。因此,,GA-BP模型能夠更加科學(xué),、合理地預(yù)測(cè)甘蔗產(chǎn)量,對(duì)甘蔗田間管理措施及統(tǒng)籌分配具有重要的指導(dǎo)意義,。

    Abstract:

    Sugarcane yield prediction is important for making accurate management decisions during sugarcane growth. Genetic algorithm (GA) optimized neural network can improve the prediction efficiency and prediction accuracy, and find the optimal solution quickly by high-speed calculation. Based on the meteorological factors (atmospheric humidity, atmospheric temperature, rainfall), field hydrothermal factors and sugarcane yield obtained from the field IOT at Zhanjiang Observation and Experimental Station during 2011—2020, BP neural network and GA-BP neural network models were used to predict and correlate the sugarcane yield in the selected areas. The results showed that the correlation coefficients of Pearson and Spearman showed that sugarcane yield was highly significantly correlated with monthly maximum soil temperature, monthly minimum soil temperature, monthly average soil temperature, monthly maximum atmospheric temperature, monthly average atmospheric temperature, monthly average atmospheric humidity with correlation coefficients higher than 0.7, significantly correlated with monthly average soil water content, monthly rainfall, and weakly correlated with monthly minimum atmospheric temperature. Under the GA-BP neural network model, the prediction accuracy of sugarcane yield was significantly higher than that of the BP neural network model, with R2 reaching 0.8428, MAPE of only 0.90%, and RMSE of 1.10t/hm2. The degree of fit between the predicted and experimental values was high, and the V-cross validation results showed that the model prediction results were accurate and stable. Therefore, GA-BP prediction can predict sugarcane yield more scientifically and rationally, which was an important guiding significance for sugarcane field management measures and coordinated allocation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

于珍珍,鄒華芬,于德水,李海亮,孫海天,汪春.融合田間水熱因子的甘蔗產(chǎn)量GA-BP預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(10):277-283. YU Zhenzhen, ZOU Huafen, YU Deshui, LI Hailiang, SUN Haitian, WANG Chun. Sugarcane Yield GA-BP Prediction Model Incorporating Field Water and Heat Factors[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(10):277-283.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-28
  • 出版日期:
文章二維碼