ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)LRCN的魚群攝食強度分類模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFD0701700)和上海市科技興農(nóng)重點項目(滬農(nóng)科推字(2019)第3-2號)


Recognition of Fish Feeding Intensity Based on Improved LRCN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    實現(xiàn)餌料的自動投喂是自動化水產(chǎn)養(yǎng)殖的重點,,對魚群的攝食強度進(jìn)行識別能夠為精準(zhǔn)投餌提供參考。目前大多數(shù)關(guān)于魚群攝食強度的研究都是基于循環(huán)養(yǎng)殖池或者自制魚缸中,并不適用于開放式養(yǎng)殖池塘,。基于實際環(huán)境,,采用水上觀測方式建立了魚群攝食強度視頻數(shù)據(jù)集,,并提出了一種基于改進(jìn)長期卷積循環(huán)網(wǎng)絡(luò)(LRCN)的魚群攝食強度分類模型,將注意力機制SE模塊嵌入卷積神經(jīng)網(wǎng)絡(luò)中,,通過SE-CNN網(wǎng)絡(luò)提取視頻幀的特征,,輸入至雙層GRU網(wǎng)絡(luò)中,最后通過全連接分類層得出視頻類別,。提出的SE-LRCN模型實現(xiàn)了對魚群攝食視頻的強度三分類,。試驗結(jié)果表明,本文提出的模型分類準(zhǔn)確率達(dá)到97%,,F(xiàn)1值達(dá)到94.8%,,與改進(jìn)前的LRCN模型相比,,準(zhǔn)確率提高12個百分點,F(xiàn)1值提高12.4個百分點,。研究模型可以更精細(xì)地識別魚群的攝食強度,,為自動化精準(zhǔn)投餌提供參考。

    Abstract:

    The realization of automatic feeding of bait has always been the focus and difficulty of automatic aquaculture. Recognition of the fish feeding intensity can provide a reference for accurate feeding. At present, many laboratories have researches on the fish feeding intensity, but most of the researches on the fish feeding intensity are based on circulating farming ponds or self-made fish tanks, which are not suitable for open farming ponds. Aiming at the actual environmental background and difficulties, the water observation method was used to build a data acquisition system and produce a video data set of fish feeding intensity. Then a fish school feeding intensity classification model was proposed based on improved long-term recurrent convolutional networks(LRCN), which embeded the attention mechanism squeeze-and-excitation block (SE-Block) into the convolutional neural networks. The SE-CNN networks was used to extract the features of the video frames, then input the features into the doublelayer gate recurrent unit networks. Finally, the video classification results were obtained through the fully connected classification layer. At the end, the proposed SE-LRCN model realized the intensity three classification of the fish school feeding intensity video. The test results showed that the classification accuracy of the proposed model reached 97%, and the F1 score reached 94.8%. Compared with the long-term recurrent convolutional networks before the improvement, the accuracy was increased by 12 percentage points, and the F1 score was increased by 12.4 percentage points. The research model can more finely recognize the fish feeding intensity, and provide a reference for automatic accurate feeding.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

徐立鴻,黃薪,劉世晶.基于改進(jìn)LRCN的魚群攝食強度分類模型[J].農(nóng)業(yè)機械學(xué)報,2022,53(10):236-241. XU Lihong, HUANG Xin, LIU Shijing. Recognition of Fish Feeding Intensity Based on Improved LRCN[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(10):236-241.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-12-15
  • 出版日期:
文章二維碼