ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機多光譜遙感的玉米FPAR估算
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFD0300702),、河南省重點研發(fā)與推廣專項(212102110250)和河南省科技智庫調(diào)研項目(HNKJZK-2022-53B)


Estimation of Maize FPAR Based on UAV Multispectral Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了探究無人機多光譜遙感影像估算作物光合有效輻射吸收比例(Fraction of absorbed photosynthetically active radiation,,F(xiàn)PAR)的潛力,以無人機多光譜影像提取的植被指數(shù),、紋理指數(shù),、葉面積指數(shù)為模型輸入?yún)?shù),,在分析不同參數(shù)與FPAR相關(guān)性的基礎(chǔ)上優(yōu)選植被指數(shù)與紋理指數(shù),并分別以一元線性模型,、多元逐步回歸模型,、嶺回歸模型、BP神經(jīng)網(wǎng)絡(luò)模型等方法估算玉米FPAR,。結(jié)果表明:植被指數(shù),、紋理指數(shù)、葉面積指數(shù) 3種參數(shù)與FPAR都具有較強的相關(guān)性,,其中植被指數(shù)相關(guān)系數(shù)最大,;在不同類型的FPAR估算模型中,BP神經(jīng)網(wǎng)絡(luò)模型的估算效果最優(yōu),,F(xiàn)PAR估算模型決定系數(shù)R2,、均方根誤差(RMSE)分別為0.857、0.173,,驗證模型R2,、RMSE分別為0.868、0.186,,模型估算值與田間實測值間相對誤差(RE)為8.71%,;在不同形式的模型參數(shù)組合中,均以植被指數(shù),、紋理指數(shù),、葉面積指數(shù) 3種參數(shù)融合的FPAR模型的估算與驗證效果最優(yōu),說明多特征參數(shù)融合能有效改善FPAR估算效果,。該研究為基于無人機多光譜遙感數(shù)據(jù)精準(zhǔn)估算玉米FPAR及生產(chǎn)潛力提供了科學(xué)依據(jù),。

    Abstract:

    In order to explore the potential of estimating the fraction of absorbed photosynthetically active radiation (FPAR) of crops from unmanned aerial vehicle (UAV) multispectral remote sensing images, the vegetation index, texture index and leaf area index (LAI) were extracted from UAV multispectral images, which were used as model input parameters. On the basis of analyzing the correlation between different parameters and FPAR, the vegetation index and texture index were optimized. The FPAR of maize was estimated by unary linear regression (UL), multivariate stepwise regression model (MSR), ridge regression model (RR) and BP neural network model (BPNN). The results showed that the vegetation indexes, texture indices and LAI had a strong correlation relationship with FPAR, and the absolute value of correlation coefficient of vegetation index was the largest. Among different types of FPAR estimation models, BPNN model had the best estimation effect. The determination coefficient (R2) and root mean square error (RMSE) of FPAR estimation model were 0.857 and 0.173, respectively. The R2 and RMSE of validation model were 0.868 and 0.186, respectively. The relative error (RE) between model estimation value and field measured value was 8.71%. In different combinations of model parameters, the FPAR model fused with vegetation index, texture index and LAI had the best estimation and verification effect, which indicated that the fusion of multi feature parameters can effectively improve the estimation effect of FPAR. These results provided a scientific basis for precision estimation of maize FPAR and production potential based on UAV multispectral remote sensing data.

    參考文獻
    相似文獻
    引證文獻
引用本文

王來剛,賀佳,鄭國清,郭燕,張彥,張紅利.基于無人機多光譜遙感的玉米FPAR估算[J].農(nóng)業(yè)機械學(xué)報,2022,53(10):202-210. WANG Laigang, HE Jia, ZHENG Guoqing, GUO Yan, ZHANG Yan, ZHANG Hongli. Estimation of Maize FPAR Based on UAV Multispectral Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(10):202-210.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-08-10
  • 出版日期:
文章二維碼