ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多尺度注意力機(jī)制和知識(shí)蒸餾的茶葉嫩芽分級(jí)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51865004、52165063)和貴州省科技計(jì)劃項(xiàng)目(黔科合支撐[2021]一般445,、黔科合支撐[2021]一般172,、黔科合支撐[2021]一般397、黔科合支撐[2022]一般165)


Tea Buds Grading Method Based on Multiscale Attention Mechanism and Knowledge Distillation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    相較于人工感官評(píng)審法,,基于深度學(xué)習(xí)和計(jì)算機(jī)技術(shù)進(jìn)行茶葉嫩芽分級(jí)可以降低時(shí)間成本并大幅提高精度,,但常用的識(shí)別模型存在著冗余計(jì)算量多和模型規(guī)格大的問題。為此以采摘自貴州紅楓山韻茶場(chǎng)的茶葉嫩芽為研究對(duì)象,,根據(jù)人工經(jīng)驗(yàn)將茶樣劃分為3個(gè)等級(jí),;在ShuffleNet-V2 0.5x基本單元中嵌入多尺度卷積塊注意力模塊(MCBAM)與多尺度深度捷徑(MDS),,提出一種茶葉嫩芽分級(jí)模型(ShuffleNet-V2 0.5x-SMAU),,聚焦茶樣中有利于分級(jí)的特征信息,;以在兩個(gè)不同源域上預(yù)訓(xùn)練后的模型作為教師和學(xué)生模型,提出一種結(jié)合雙遷移和知識(shí)蒸餾的茶葉嫩芽分級(jí)方法,,借助暗知識(shí)的傳授進(jìn)一步增強(qiáng)分級(jí)模型分類性能與抵抗過擬合的能力。結(jié)果表明,本文方法能在保證模型輕量性的條件下,,對(duì)測(cè)試集各級(jí)樣本的分級(jí)準(zhǔn)確率達(dá)到100%,、92.70%、89.89%,,表現(xiàn)出優(yōu)于采用復(fù)雜網(wǎng)絡(luò)模型的綜合性能,,在儲(chǔ)存資源有限和硬件水平低的生產(chǎn)場(chǎng)景中應(yīng)用具有優(yōu)越性。

    Abstract:

    Compared with the artificial sensory evaluation method, the tea bud grading based on deep learning and computer technology can reduce the time cost and greatly improve the accuracy, but the commonly used recognition model has the problem of large redundant calculation and large model specifications. For this reason, the tea buds picked from the Hongfeng Mountain Yun Tea Farm in Guizhou were used as the research object, and the tea samples were divided into three grades based on the workers’ experience. The multiscale convolutional block attention module (MCBAM) and multiscale depth shortcut (MDS) were embedded in the ShuffleNet-V2 0.5x basic unit, a tea bud grading model (ShuffleNet-V2 0.5x-SMAU) was proposed, which focused on the feature information in tea samples that was conducive to grading. The models pre-trained on two different source domains was taken as the teacher and student model. A tea bud grading method was proposed which combined dual migration and knowledge distillation. With the help of dark knowledge, the classification performance of the grading model and the ability to resist over-fitting were further enhanced. The results showed that the classification accuracy of the method can achieve 100%, 92.70% and 89.89% respectively for the three different grade samples in the test set under the condition of ensuring the lightweight of the model, which was better than the comprehensive performance of the complex network model. The application was more advantageous in production scenarios with limited storage resources and low hardware levels.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃海松,陳星燃,韓正功,范青松,朱云偉,胡鵬飛.基于多尺度注意力機(jī)制和知識(shí)蒸餾的茶葉嫩芽分級(jí)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(9):399-407,,458. HUANG Haisong, CHEN Xingran, HAN Zhenggong, FAN Qingsong, ZHU Yunwei, HU Pengfei. Tea Buds Grading Method Based on Multiscale Attention Mechanism and Knowledge Distillation[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):399-407,,458.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-09-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼