ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SSA-PSO-LSTM模型的羊舍相對濕度預測技術
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61871475),、廣州市創(chuàng)新平臺建設計劃實驗室建設專項(201905010006)、廣州市重點研發(fā)計劃項目(201903010043,、202103000033),、廣東省農(nóng)業(yè)技術研發(fā)項目(2018LM2168)、廣東省科技計劃項目(2020A141405060,、2016A020210122,、2020B0202080002、2021B42121631)和廣州市增城區(qū)農(nóng)村科技特派員項目(2021B42121631)


Prediction of Sheep House Humidity Based on SSA-PSO-LSTM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    羊舍濕度過高或過低都會直接威脅肉羊健康生長,,及時掌握濕度變化趨勢并提前調(diào)控是確保規(guī)?;庋驘o應激環(huán)境下健康養(yǎng)殖的關鍵。為提高濕度預測精度,,提出了基于奇異譜分析(SSA),、粒子群優(yōu)化算法(PSO)、長短時記憶網(wǎng)絡(LSTM)的羊舍濕度非線性組合預測模型,。利用SSA分離出正常序列和噪聲序列,,將原始序列轉換為平滑序列;其次通過PSO不斷迭代優(yōu)化確定LSTM的最優(yōu)參數(shù)組合,,降低LSTM的訓練成本,;最終依據(jù)優(yōu)化參數(shù)建立組合預測模型分別對兩序列進行預測,模型結果之和為最終預測結果,。利用該模型對新疆維吾爾自治區(qū)2021年3月17—27日期間的羊舍空氣相對濕度進行預測,,結果表明,該組合預測模型具有良好的泛化性,、穩(wěn)定性和收斂性,。與標準的ELM,、SVR、LSTM,、PSO-LSTM,、EMD-PSO-LSTM等模型相比,本文提出的SSA-PSO-LSTM組合模型具有更高的預測精度,,其均方誤差,、平均絕對誤差和決定系數(shù)分別為1.127%2、0.803%和0.988,。

    Abstract:

    Sheep house humidity has the characteristics of large time delay, nonlinearity and spatial distribution difference, and the interaction mechanism with a variety of environmental parameters is complex and highly coupled. The humidity prediction model constructed by traditional prediction methods is difficult to meet the needs of largescale accurate breeding of mutton sheep. Too high or too low humidity of sheep house will directly threaten the healthy growth of sheep. Timely control of the trend of humidity and early regulation is the key to ensure the welfare of sheep. A nonlinear combined prediction model of sheep house humidity based on singular spectrum analysis (SSA), particle swarm optimization (PSO) and optimized long short-term memory network (LSTM) was proposed for accuracy humidity prediction. Firstly, the normal sequence and noise sequence were separated by SSA, and the original sequence was transformed into smooth sequence. Secondly, the optimal parameter combination of LSTM was determined through PSO iterative optimization to reduce the training cost of LSTM. Finally, a combined prediction model was established according to the optimized parameters to predict the two sequences respectively, and the sum of the model results was the final prediction result. The model was used to predict the air humidity in sheep houses in Xinjiang Uygur Autonomous Region from March 17, 2021 to March 27, 2021. The results showed that the combined prediction model had good generalization, stability and convergence. Compared with the standard ELM, SVR, LSTM, PSO-LSTM,EMD-PSO-LSTM and other models, the proposed SSA-PS-LSTM combined model had higher prediction accuracy. Its mean square error (MSE), mean absolute error (MAE) and determination coefficient (R2) were 1.127%2, 0.803% and 0.988, respectively. The experimental results showed that the established model had better prediction performance, which can provide important decisions for formulating optimized sheep house environmental control strategy, solving the lag problem of environmental control effect, and it made a strong support for the healthy growth of sheep.

    參考文獻
    相似文獻
    引證文獻
引用本文

郭建軍,韓鈐鈺,董佳琦,周冰,徐龍琴,劉雙印.基于SSA-PSO-LSTM模型的羊舍相對濕度預測技術[J].農(nóng)業(yè)機械學報,2022,53(9):365-373,,398. GUO Jianjun, HAN Qianyu, DONG Jiaqi, ZHOU Bing, XU Longqin, LIU Shuangyin. Prediction of Sheep House Humidity Based on SSA-PSO-LSTM Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):365-373,398.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼