ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v4的自然環(huán)境蘋果輕量級檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFB1709603)


Lightweight Real-time Apple Detection Method Based on Improved YOLO v4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對蘋果采摘機(jī)器人識別算法包含復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)和龐大的參數(shù)體量,,嚴(yán)重限制檢測模型的響應(yīng)速度問題,本文基于嵌入式平臺,以YOLO v4作為基礎(chǔ)框架提出一種輕量化蘋果實(shí)時(shí)檢測方法(YOLO v4-CA),。該方法使用MobileNet v3作為特征提取網(wǎng)絡(luò),,并在特征融合網(wǎng)絡(luò)中引入深度可分離卷積,降低網(wǎng)絡(luò)計(jì)算復(fù)雜度,;同時(shí),,為彌補(bǔ)模型簡化帶來的精度損失,在網(wǎng)絡(luò)關(guān)鍵位置引入坐標(biāo)注意力機(jī)制,,強(qiáng)化目標(biāo)關(guān)注以提高密集目標(biāo)檢測以及抗背景干擾能力,。在此基礎(chǔ)上,針對蘋果數(shù)據(jù)集樣本量小的問題,,提出一種跨域遷移與域內(nèi)遷移相結(jié)合的學(xué)習(xí)策略,,提高模型泛化能力。試驗(yàn)結(jié)果表明,,改進(jìn)后模型的平均檢測精度為92.23%,,在嵌入式平臺上的檢測速度為15.11f/s,約為改進(jìn)前模型的3倍,。相較于SSD300與Faster R-CNN,,平均檢測精度分別提高0.91、2.02個(gè)百分點(diǎn),,在嵌入式平臺上的檢測速度分別約為SSD300和Faster R-CNN的1.75倍和12倍,;相較于兩種輕量級目標(biāo)檢測算法DY3TNet與YOLO v5s,平均檢測精度分別提高7.33,、7.73個(gè)百分點(diǎn),。因此,改進(jìn)后的模型能夠高效實(shí)時(shí)地對復(fù)雜果園環(huán)境中的蘋果進(jìn)行檢測,,適宜在嵌入式系統(tǒng)上部署,,可以為蘋果采摘機(jī)器人的識別系統(tǒng)提供解決思路。

    Abstract:

    Under the picking conditions in unstructured environments, such as overlapping and occlusion, the recognition system based on deep learning in apple picking robot contained complex network structure and large parameter volumes, for which the response speed of detection model was severely limited. In response to this problem, based on the embedded platform, a lightweight apple real-time detection method called YOLO v4-CA, which selected YOLO v4 as the basic framework, was proposed. The proposed method used MobileNet v3 as the feature extraction network, and introduced deep separable convolution in the feature fusion network to reduce network computational complexity. In order to ensure the detection accuracy, coordinate attention was introduced in the key position of the network to strengthen target attention, which can improve the ability to detect dense targets and resist background interference. For the small apple datasets, a combination of cross-domain and in-domain transfer learning strategy was proposed to improve the generalization ability of the model. Experimental results showed that the average precision of the improved model was 92.23%, and the detection speed on the embedded hardware platform was 15.11 frames per second, which was about three times than that of the original YOLO v4 model. Compared with the two representative target detection algorithms of SSD300 and Faster R-CNN, the average precision was increased by 0.91 percentage points and 2.02 percentage points respectively, and the detection speed on the embedded hardware platform was about 1.75 times and 12 times that of the two respectively. Compared with the two lightweight target detection algorithms of DY3TNet and YOLO v5s, the average precision was increased by 7.33 percentage points and 7.73 percentage points respectively. Therefore, the improved model YOLO v4-CA can efficiently detect apples in a complex orchard environment in real time, and it was suitable for deployment on embedded systems. It can provide solutions for the recognition system of apple picking robots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王卓,王健,王梟雄,時(shí)佳,白曉平,趙泳嘉.基于改進(jìn)YOLO v4的自然環(huán)境蘋果輕量級檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(8):294-302. WANG Zhuo, WANG Jian, WANG Xiaoxiong, SHI Jia, BAI Xiaoping, ZHAO Yongjia. Lightweight Real-time Apple Detection Method Based on Improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):294-302.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-08-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-10-18
  • 出版日期:
文章二維碼