ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

不同植被覆蓋度下無(wú)人機(jī)多光譜遙感土壤含鹽量反演
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403302)和國(guó)家自然科學(xué)基金項(xiàng)目(51979232)


UAV Multispectral Remote Sensing Soil Salinity Inversion Based on Different Fractional Vegetation Coverages
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    準(zhǔn)確快速獲取植被覆蓋條件下農(nóng)田土壤鹽分信息,為土壤鹽漬化治理提供依據(jù),。利用無(wú)人機(jī)遙感平臺(tái),,獲取2019年7、8,、9月內(nèi)蒙古河套灌區(qū)沙壕渠灌域試驗(yàn)地的多光譜遙感圖像以及取樣點(diǎn)0~10cm,、10~20cm、20~40cm,、40~60cm深度處土壤含鹽量,,通過多光譜遙感圖像計(jì)算得到光譜指數(shù),選擇歸一化植被指數(shù)(NDVI-2)代入像元二分模型計(jì)算植被覆蓋度,,并劃分為T1(裸土),、T2(低植被覆蓋度)、T3(中植被覆蓋度),、T4(高植被覆蓋度)4個(gè)覆蓋度等級(jí),;同時(shí),對(duì)光譜指數(shù)進(jìn)行全子集變量篩選,,并利用偏最小二乘回歸算法和極限學(xué)習(xí)機(jī)算法,,構(gòu)建不同覆蓋度下各深度土壤含鹽量反演模型。研究結(jié)果表明,,裸土和高植被覆蓋度下的反演模型精度高于低植被覆蓋度和中植被覆蓋度下的反演模型精度;對(duì)比PLSR和ELM 2種SSC反演模型精度,,ELM模型的反演精度比PLSR模型高,;覆蓋度T1、T2,、T3和T4的最佳反演深度分別為0~10cm,、10~20cm、20~40cm,、20~40cm,。研究結(jié)果為無(wú)人機(jī)多光譜遙感監(jiān)測(cè)農(nóng)田土壤鹽漬化提供了思路,。

    Abstract:

    Accurate and rapid acquisition of soil salinity information under vegetation coverage can provide a basis for soil salinization management. The UAV remote sensing platform was used to obtain multispectral remote sensing images of the Shahao Canal Irrigation Area in the Hetao Irrigation District of Inner Mongolia in July, August and September 2019 and the sampling points were 0~10cm, 10~20cm, 20~40cm and 40~60cm depths of soil salt content (SSC). The spectral index was calculated through multi-spectral remote sensing images, and the normalized vegetation index (NDVI-2) was selected and brought into the pixel binary model (PDM) to calculate the vegetation coverage (FVC). The coverage was divided into four coverage levels: T1 (bare soil), T2 (low vegetation coverage), T3 (medium vegetation coverage), and T4 (high value coverage). The spectral index was screened by a full subset of variables, and partial least squares regression (PLSR) and extreme learning machine (ELM) were used to construct inversion models of soil salinity at various depths under different coverages. The research results showed that the accuracy of the inversion model under bare soil and high vegetation coverage was higher than the accuracy of the inversion model under low vegetation and medium vegetation coverage; comparing the accuracy of the two SSC inversion models, PLSR and ELM, the inversion accuracy of the ELM model was higher than that of the PLSR model; the best inversion depths under the coverage of T1, T2, T3 and T4 were 0~10cm,10~20cm,20~40cm, 20~40cm, respectively.The research result can provide an idea for UAV multi-spectral remote sensing to monitor soil salinization.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張智韜,臺(tái)翔,楊寧,張珺銳,黃小魚,陳欽達(dá).不同植被覆蓋度下無(wú)人機(jī)多光譜遙感土壤含鹽量反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(8):220-230. ZHANG Zhitao, TAI Xiang, YANG Ning, ZHANG Junrui, HUANG Xiaoyu, CHEN Qinda. UAV Multispectral Remote Sensing Soil Salinity Inversion Based on Different Fractional Vegetation Coverages[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):220-230.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-14
  • 出版日期:
文章二維碼