ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于融合注意力機(jī)制的蘋果品種分類方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

天津市自然科學(xué)基金項(xiàng)目(18JCQNJC70600)和天津市高等學(xué)校創(chuàng)新團(tuán)隊(duì)培養(yǎng)計(jì)劃項(xiàng)目(TD13-5034)


Apple Variety Classification Method Based on Fusion Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    不同品種蘋果之間往往存在較大的價(jià)格差異,,為了防止從采購(gòu)到銷售過(guò)程中因蘋果品種分類不當(dāng)產(chǎn)生經(jīng)濟(jì)損失,,提出了一種基于融合注意力機(jī)制的自動(dòng)識(shí)別和分類模型EBm-Net(針對(duì)蘋果類型),。該模型通過(guò)融合通道注意力和空間注意力機(jī)制充分提取了蘋果表面的形狀輪廓特征和顏色紋理特征,,從而進(jìn)一步增加蘋果類型之間的特征距離。同時(shí),,從特征圖和類別概率統(tǒng)計(jì)圖2方面證明了EBm-Net在蘋果品種分類方法上的有效性,。實(shí)驗(yàn)結(jié)果表明,EBm-Net網(wǎng)絡(luò)模型在紅富士,、喬納金,、秦冠、小國(guó)光,、金冠,、澳洲青蘋、嘎啦上的分類準(zhǔn)確率分別為96.25%,、96.25%,、100%、92.50%,、98.75%,、100%和93.75%,7種蘋果類型的總體分類準(zhǔn)確率高達(dá)96.78%。因此,,將視覺(jué)圖像與深度學(xué)習(xí)相結(jié)合對(duì)蘋果品種進(jìn)行分類和識(shí)別是可行的,,為蘋果品種的實(shí)時(shí)檢測(cè)提供了一種新的方法。

    Abstract:

    Each apple is unique but can be classified into an “apple type” via features such as color, contour, texture, and other physical characteristics. Many apple growers classify apple types manually, often at great expense due to misclassification errors, low efficiency, inconsistent results, and high labor costs. Therefore, a real-time apple type detection and classification system is needed to prevent these complications, which typically happen in the period between sourcing and sales. To automate apple type classification, EBm-Net, an automatic identification and classification model was proposed based on a dual-branch structure network. The model fully extracted the contour, color, and texture characteristics of an apple’s surface by fusing channel attention and spatial attention mechanisms; this was done to further increase the feature difference between apple types by using a distance metric. The effectiveness of the EBm-Net apple type classification method was validated by analyzing its feature map and category probability statistics map. Experimental results showed that the classification accuracy of the EBm-Net model applied to Red Fuji, Jonagold, Qin Guan, Xiao Guoguang, Golden Crown, Granny Smith, and Gala apples was 96.25%, 96.25%, 100%, 92.50%, 98.75%, 100% and 93.75%, respectively; the overall classification accuracy of the seven apple types was as high as 96.78%. Therefore, it was feasible to use visual images combined with deep learning to classify and recognize apple type, which provided a method for real-time autonomous apple type classification.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

耿磊,黃亞龍,郭永敏.基于融合注意力機(jī)制的蘋果品種分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(6):304-310,,369. GENG Lei, HUANG Yalong, GUO Yongmin. Apple Variety Classification Method Based on Fusion Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(6):304-310,,369.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-15
  • 出版日期:
文章二維碼