ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜和集成學(xué)習(xí)的庫爾勒香梨黑斑病潛育期診斷
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

塔里木大學(xué)現(xiàn)代農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目(TDNG2020102)、河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20327111D),、河北省省屬高等學(xué)?;究蒲袠I(yè)務(wù)費(fèi)研究項(xiàng)目(KY202002)和國家自然科學(xué)基金項(xiàng)目(31960498)


Diagnosis of Korla Pear Black Spot Disease in Incubation Period Based on Hyperspectral Imaging and Ensemble Learning Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    黑斑病是危害庫爾勒香梨的真菌病害之一。若在黑斑病癥狀顯證之前實(shí)現(xiàn)早期診斷,,對于防止病害蔓延,、減少經(jīng)濟(jì)損失具有重要的意義。結(jié)合高光譜成像技術(shù)和Stacking集成學(xué)習(xí)算法,,構(gòu)建了香梨黑斑病早期快速診斷模型,。獲取了健康、潛育期,、輕度發(fā)病和重度發(fā)病的黑斑病庫爾勒香梨的高光譜圖像,,提取感興趣區(qū)域內(nèi)的平均光譜,經(jīng)標(biāo)準(zhǔn)正態(tài)變量變換,、一階導(dǎo)數(shù),、二階導(dǎo)數(shù)及組合預(yù)處理后,利用主成分分析進(jìn)行數(shù)據(jù)降維,。然后,,以K最近鄰法(KNN),、最小二乘支持向量機(jī)(LS-SVM)和隨機(jī)森林(RF)算法為基學(xué)習(xí)器,以LS-SVM為元學(xué)習(xí)器,,構(gòu)建了黑斑病病害程度的Stacking集成學(xué)習(xí)預(yù)測模型,。結(jié)果表明,隨著病害程度加深,,光譜反射率整體呈下降趨勢,,且存在顯著性差異,為分類模型的建立提供了理論依據(jù),。所建模型對健康和不同病害程度黑斑病庫爾勒香梨的總體判別準(zhǔn)確率為98.28%,,對潛育期香梨的判別準(zhǔn)確率為100%。與利用單一分類器建模結(jié)果相比,,總體判別準(zhǔn)確率和潛育期香梨判別準(zhǔn)確率分別上升5.18,、23.08個(gè)百分點(diǎn)。結(jié)果證明,,Stacking集成學(xué)習(xí)具有較強(qiáng)的特征學(xué)習(xí)能力,,將其與高光譜成像技術(shù)結(jié)合,能實(shí)現(xiàn)庫爾勒香梨黑斑病潛育期的識(shí)別,。該結(jié)果為庫爾勒香梨黑斑病的早期快速診斷和發(fā)病過程的實(shí)時(shí)監(jiān)測提供了一種新的方法,。

    Abstract:

    Black spot is one of the fungal diseases of Korla pear. It is of great significance to realize early diagnosis of black spot disease before the symptoms are evident, as it can prevent the spread of the disease and reduce the economic loss. Hyperspectral imaging technology was combined with Stacking ensemble learning algorithm to construct early and rapid diagnosis model of Korla pear black spot. Hyperspectral images of healthy, incubation period, mildly diseased and severely diseased Korla pear were obtained, and the average spectra in the region of interest were extracted. After pretreated by standard normal variable transformation, the first derivative, second derivative and their combinations, principal component analysis was implemented to reduce the data dimension. Then, the Stacking ensemble learning prediction model for black spot disease was constructed with K-nearest neighbor method (KNN), least squares-support vector machine (LS-SVM) and random forest (RF) algorithm as the base learner and LS-SVM as the meta-learner. The results showed that with the deepening of the disease degree, the reflectance spectra showed a downward trend, significant difference was observed, which provided a theoretical basis for the establishment of classification models. The total classification accuracy of healthy and different disease degrees of Korla pear was 98.28%, and the classification accuracy for incubation period pear was 100%. Compared with the results using single classifier, the classification accuracy for all pear and incubation period pear was increased by 5.18 and 23.08 percentage points, respectively. The results showed that Stacking ensemble learning had strong feature learning ability, and its combination with hyperspectral imaging technology can realize the recognition of incubation period of black spot in Korla pear. The results can provide a method for the early diagnosis and real-time monitoring of black spot of Korla pear.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉媛媛,張凡,師琪,馬倩云,王文秀,孫劍鋒.基于高光譜和集成學(xué)習(xí)的庫爾勒香梨黑斑病潛育期診斷[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(6):295-303. LIU Yuanyuan, ZHANG Fan, SHI Qi, MA Qianyun, WANG Wenxiu, SUN Jianfeng. Diagnosis of Korla Pear Black Spot Disease in Incubation Period Based on Hyperspectral Imaging and Ensemble Learning Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(6):295-303.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-24
  • 出版日期:
文章二維碼