ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于ST-LSTM的植物生長(zhǎng)發(fā)育預(yù)測(cè)模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省自然科學(xué)基金重點(diǎn)項(xiàng)目(ZR2020KF002),、山東省重點(diǎn)研發(fā)計(jì)劃(重大科技創(chuàng)新工程)項(xiàng)目(2021LZGC013)和國(guó)家自然科學(xué)基金項(xiàng)目(31871543)


Plant Growth and Development Prediction Model Based on ST-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提早預(yù)知植物生長(zhǎng)發(fā)育是智能育種過(guò)程的重要組成部分,,針對(duì)植物表型難以精準(zhǔn)預(yù)測(cè)和模擬的問(wèn)題,利用植物生長(zhǎng)發(fā)育的空間和時(shí)間依賴性,,提出了一種基于時(shí)空長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(Spatiotemporal long short-term memory,,ST-LSTM)的植物生長(zhǎng)發(fā)育預(yù)測(cè)模型,實(shí)現(xiàn)植物生長(zhǎng)發(fā)育的預(yù)測(cè),。首先,,通過(guò)微調(diào)Mask R-CNN模型實(shí)現(xiàn)識(shí)別、提取植物掩模,,預(yù)處理具有時(shí)空相關(guān)性的植物生長(zhǎng)發(fā)育圖像序列,,構(gòu)建植物生長(zhǎng)發(fā)育預(yù)測(cè)數(shù)據(jù)集。然后,,基于ST-LSTM建立植物生長(zhǎng)發(fā)育預(yù)測(cè)模型,利用歷史生長(zhǎng)發(fā)育圖像序列,,融合時(shí)空深度特征,,預(yù)測(cè)植物未來(lái)的生長(zhǎng)發(fā)育圖像序列。研究結(jié)果表明,,所提出模型預(yù)測(cè)的圖像序列與生長(zhǎng)發(fā)育實(shí)際圖像序列具有較高的一致性和相似性,,首個(gè)預(yù)測(cè)時(shí)間節(jié)點(diǎn)的結(jié)構(gòu)相似度為0.8741,均方誤差為17.10,,峰值信噪比為30.83,,測(cè)試集的冠層葉面積、冠幅和葉片數(shù)預(yù)測(cè)R2分別為0.9619、0.9087和0.9158,。該研究實(shí)現(xiàn)了基于植物生長(zhǎng)發(fā)育圖像序列的生長(zhǎng)發(fā)育預(yù)測(cè),,有效減少了田間反復(fù)試驗(yàn)的時(shí)間、土地和人力成本,,為提高智能育種效率提供了參考,。

    Abstract:

    Early prediction for the growth and development of plants was an important component of the intelligent breeding process. However, it is difficult to accurately predict and simulate plant phenotypes. A prediction model of plant growth and development was proposed based on spatiotemporal long short-term memory (ST-LSTM) to predict future growth and development of plant. Firstly, the plant masks were recognized and extracted by the pre-trained Mask R-CNN model and the background of the plant image was removed by morphological operations. Then, the plant growth and development prediction data set was constructed. After that, utilizing the spatial and temporal dependence of plant growth and development, the image sequence of plants future growth and development was predicted by the prediction model for plant growth and development using the spatial and temporal depth characteristics integrated from the image sequence of early plant growth and development. The results showed that the image sequence predicted by the proposed model had high consistency and similarity with the actual image sequence of growth and development. At the first prediction time node, the structural similarity index measure was 0.8741, the mean square error was 17.10, and the peak signal to noise ratio was 30.83. The prediction determination coefficient (R2) of canopy leaf area, crown width, and leaf number were 0.9619, 0.9087 and 0.9158, respectively. Finally, the research realized the prediction of growth and development based on the image sequence of plant growth and development, which would effectively reduce the time, land and labor cost of repeated experiments in the field, and provided a reference for improving breeding efficiency.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王春穎,泮瑋婷,李祥,劉平.基于ST-LSTM的植物生長(zhǎng)發(fā)育預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(6):250-258. WANG Chunying, PAN Weiting, LI Xiang, LIU Ping. Plant Growth and Development Prediction Model Based on ST-LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(6):250-258.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-01-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-22
  • 出版日期:
文章二維碼