ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于環(huán)境變量和機(jī)器學(xué)習(xí)的土壤水分反演模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

內(nèi)蒙古自治區(qū)科技計(jì)劃項(xiàng)目(201802123)和國家自然科學(xué)基金項(xiàng)目(52069021,、51839006)


Soil Moisture Inversion Based on Environmental Variables and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為利用多源數(shù)據(jù)構(gòu)建毛烏素沙地腹部土壤含水率建模指示因子,通過微波后向散射系數(shù),、地表溫度,、纓帽變換要素、波段反射率,、干旱指數(shù)和地形要素等17個(gè)變量為建模因子,,分別以偏最小二乘(Partial least squares regression,,PLSR)、極限學(xué)習(xí)機(jī)(Extreme learning machine,,ELM)和隨機(jī)森林(Random forest,,RF)3種方法構(gòu)建土壤含水率反演模型,對(duì)模型進(jìn)行驗(yàn)證和對(duì)比,,并對(duì)研究區(qū)的土壤水分分布進(jìn)行制圖,。結(jié)果表明:溫度植被干旱指數(shù)是土壤水分空間變異性的最重要的預(yù)測因子(決定系數(shù)為0.64),其次是地表溫度(0.6),、σVV(0.38),、植被指數(shù)(0.38)、波段7反射率(0.35),、σVH(0.32),、波段6反射率(0.3)和反照率(0.26)。相比于未篩選變量所構(gòu)建的模型,,利用最優(yōu)子集篩選(Best subset selection,,BSS)變量所構(gòu)建的模型精度均有所提升。其中PLSR在處理共線性方面表現(xiàn)最優(yōu),,ELM回歸模型最穩(wěn)定,。RF模型具有最高的精確度,4月,,決定系數(shù)為0.74,,均方根誤差為8.85%,平均絕對(duì)誤差為7.86%,;8月,,決定系數(shù)為0.75,均方根誤差為8.86%,,平均絕對(duì)誤差為7.41%,。不同方法反演的土壤水分分布趨勢沒有顯著差異,高土壤含水率出現(xiàn)在研究區(qū)的北部和東南部,,中北部平坦地區(qū)的土壤含水率較低,。利用光譜指數(shù)、環(huán)境因子和地形數(shù)據(jù)構(gòu)建的多因子,、多指數(shù)綜合模型能較高精度地反演毛烏素沙地腹部表層土壤水分,,對(duì)研究該地區(qū)土地荒漠化和生態(tài)環(huán)境治理具有參考價(jià)值。

    Abstract:

    In order to construct the modeling indicators of soil moisture content in the Mu Us sandy land using multi-source data, totally 17 variables, including microwave backscattering coefficient, surface temperature, silk hat transform factor, band reflectance, drought index and topographic factor were used as modeling factors. PLSR, extreme learning machine (ELM) and random forest (RF) were used to construct soil water content inversion models, verify and compare the models, and map soil water distribution in the study area. The results showed that the determination coefficient of temperature vegetation drought index was 0.64, followed by land surface temperature (0.6),σVV(0.38), vegetation index (0.38), band 7 reflectance (0.35),σVH(0.32), band 6 reflectance (0.3) and Albedo (0.26). Compared with the model constructed with unscreened variables, the accuracy of the model constructed with best subset selection (BSS) variables was improved. PLSR had the best performance in collinearity, and ELM regression model was the most stable. RF model had the highest accuracy, with a determination coefficient of 0.74, root mean square error of 8.85% and mean absolute error of 7.86% in April. In August, the determination coefficient was 0.75, the root mean square error was 8.86%, and the mean absolute error was 7.41%. There was no significant difference in soil water distribution trend between different methods. The highest soil water content occurred in the north and southeast of the study area, and the lower soil water content occurred in the flat area in the central and northern part of the study area. Using spectral index, environmental factor and topographic data, the multi-factor and multi-index comprehensive model can accurately retrieve the surface soil moisture in the Mu Us sandy land, which had reference value for the study of land desertification and ecological environment control in this area.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王思楠,李瑞平,吳英杰,趙水霞,王秀青.基于環(huán)境變量和機(jī)器學(xué)習(xí)的土壤水分反演模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):332-341. WANG Sinan, LI Ruiping, WU Yingjie, ZHAO Shuixia, WANG Xiuqing. Soil Moisture Inversion Based on Environmental Variables and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):332-341.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期:
文章二維碼