ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多語(yǔ)義特征的農(nóng)業(yè)短文本匹配技術(shù)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1101105),、北京市科技計(jì)劃項(xiàng)目(Z191100004019007),、國(guó)家自然科學(xué)基金項(xiàng)目(61871041)和國(guó)家大宗蔬菜產(chǎn)業(yè)技術(shù)體系崗位專家項(xiàng)目(CARS-23-C06)


Agricultural Short Text Matching Technology Based on Multi-semantic Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    “中國(guó)農(nóng)技推廣APP”農(nóng)業(yè)問(wèn)答社區(qū)存在提問(wèn)數(shù)據(jù)量大、規(guī)范性差,、涉及面廣,、噪聲多、特征稀疏等影響文本語(yǔ)義匹配的問(wèn)題,,為了改善農(nóng)業(yè)提問(wèn)數(shù)據(jù)相似性判斷的性能,,提出了融合多語(yǔ)義特征的文本匹配模型Co_BiLSTM_CNN,從深度語(yǔ)義,、詞語(yǔ)共現(xiàn),、最大匹配度3個(gè)層面提取短文本特征,并利用共享參數(shù)的孿生網(wǎng)絡(luò)結(jié)構(gòu),,分別運(yùn)用雙向長(zhǎng)短期記憶網(wǎng)絡(luò),、卷積神經(jīng)網(wǎng)絡(luò)和密集連接網(wǎng)絡(luò)構(gòu)建文本匹配模型。試驗(yàn)結(jié)果表明,,該模型可以更全面提取文本特征,,文本相似性判斷的正確率達(dá)94.15%,與其他6種模型相比,,文本匹配效果優(yōu)勢(shì)明顯,。

    Abstract:

    With the development of information technology, agricultural information consultant service based on mobile Internet has become an important part of agro-technical extension system. More than ten million questions in all have been collected by agro-technical extension Q&A community. With the continuous popularization of Q&A community, answering questions manually only by agricultural experts and technicians can neither follow the rapid growth of the questions nor meet the needs of farmers who want to be answered quickly and accurately. Agricultural intelligent Q&A is one of the effective ways to solve the problem. High quality text matching for new questions is the key technology. The accuracy of text matching is limited by the characteristics of agricultural text, such as large amount of data, poor standardization, wide range, much noise, and sparse features. In order to improve the accuracy, the deep semantics, word co-occurrence and maximum matching degree of agricultural short text were extracted and Co_BiLSTM_CNN model composed of bi-long short-term memory, convolutional neural networks, dense networks and Siamese network of shared parameters, was proposed to extract multi-semantic features. The precision, recall, F1, accuracy and time complexity were selected as evaluation indexes to comprehensively measure the performance of the model. The experimental results showed that the model could extract text features more comprehensively, with an accuracy of 94.15%. Compared with the other six text matching models, the experimental results showed obvious advantages.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

金寧,趙春江,吳華瑞,繆祎晟,王海琛,楊寶祝.基于多語(yǔ)義特征的農(nóng)業(yè)短文本匹配技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):325-331. JIN Ning, ZHAO Chunjiang, WU Huarui, MIAO Yisheng, WANG Haichen, YANG Baozhu. Agricultural Short Text Matching Technology Based on Multi-semantic Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):325-331.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期:
文章二維碼