ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)MobileFaceNet的羊臉識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100601)


Sheep Face Recognition Method Based on Improved MobileFaceNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)羊只個(gè)體差異較小,相似度高難以辨別,,遠(yuǎn)距離識(shí)別準(zhǔn)確率不高等問題,,本文基于MobileFaceNet網(wǎng)絡(luò)提出了一種融合空間信息的高效通道注意力機(jī)制的羊臉識(shí)別模型,對(duì)羊只進(jìn)行非接觸式識(shí)別,。該研究基于YOLO v4目標(biāo)檢測(cè)方法生成羊臉檢測(cè)器,,以構(gòu)建羊臉識(shí)別數(shù)據(jù)庫;在MobileFaceNet的深度卷積層和殘差層中引入融合空間信息的高效通道注意力(ECCSA),,以增加主干特征的提取范圍,,提高識(shí)別率,并采用余弦退火進(jìn)行動(dòng)態(tài)學(xué)習(xí)率調(diào)優(yōu),,最終構(gòu)建ECCSA-MFC模型,,實(shí)現(xiàn)羊只個(gè)體識(shí)別。試驗(yàn)結(jié)果表明,,在羊臉檢測(cè)上,,基于YOLO v4的羊臉檢測(cè)模型準(zhǔn)確率可達(dá)97.91%,,可以作為臉部檢測(cè)器;在羊臉識(shí)別上,,ECCSA-MFC模型在開集驗(yàn)證中識(shí)別率可達(dá)88.06%,,在閉集驗(yàn)證中識(shí)別率可達(dá)96.73%。該研究提出的ECCSA-MFC模型在擁有較高識(shí)別率的同時(shí)更加輕量化,,模型所占內(nèi)存僅為4.8MB,,可為羊場(chǎng)智慧化養(yǎng)殖提供解決方案。

    Abstract:

    The difference between sheep is small, the similarity is high, it is difficult to distinguish, and the accuracy of long-distance recognition is not high. To solve that, a sheep face recognition model with efficient channel attention mechanism integrating spatial information was proposed to recognize sheep non-contact. The model was based on MobileFaceNet network. The research generated sheep face detector based on YOLO v4 target detection method was used to construct sheep face recognition database. An efficient channel attention integrating spatial information was introduced into the deep convolution layer and residual layer of MobileFaceNet to increase the extraction range of trunk features and improve the recognition rate. Cosine annealing was used to optimize the dynamic learning rate, and finally ECCSA-MFC model was built to realize sheep individual recognition. The experimental results showed that the accuracy of the sheep face detection model based on YOLO v4 can reach 97.91% and can be used as a face detector. In sheep face recognition, the recognition rate of ECCSA-MFC algorithm can reach 88.06% in open set verification and 96.73% in closedset verification. The proposed ECCSA-MFC model had higher recognition rate and lighter weight. The model size was only 4.8MB, which can provide a solution for intelligent breeding in sheep farm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏鳴,周利香,李永恒,郝靳曄,孫揚(yáng),李書琴.基于改進(jìn)MobileFaceNet的羊臉識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):267-274. ZHANG Hongming, ZHOU Lixiang, LI Yongheng, HAO Jinye, SUN Yang, LI Shuqin. Sheep Face Recognition Method Based on Improved MobileFaceNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):267-274.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期:
文章二維碼