ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于自適應(yīng)卷積神經(jīng)網(wǎng)絡(luò)的染病蝦識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

浙江省基礎(chǔ)公益計劃項目(LGG21F030013,、LGG20F030006,、LGG20F010010、LGG22F020021)和嘉興市科技計劃項目(2021AY10071,、2020AY10009)


Diseased Shrimp Identification Method Based on Adaptive Convolutional Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對南美白對蝦樣本來源多樣導致的泛化效果較差的問題,,引入香農(nóng)信息論構(gòu)造不同來源樣本的特征差異模型,以深度卷積神經(jīng)網(wǎng)絡(luò)(DCNN)為識別框架基礎(chǔ),,依據(jù)多源樣本組成的數(shù)據(jù)集在分類前后呈現(xiàn)的熵減規(guī)則計算DCNN中的網(wǎng)絡(luò)超參數(shù),,消解數(shù)據(jù)集從隨機輸入到規(guī)則輸出的信息熵,打破數(shù)據(jù)類型從三維輸入到一維輸出的熵變動,,實現(xiàn)圖像數(shù)據(jù)由高維空間向低維空間的映射,,獲取DCNN中關(guān)于超參數(shù)和網(wǎng)絡(luò)深度的自適應(yīng)優(yōu)化策略,以提高識別不同來源染病蝦的泛化效果,。實驗結(jié)果表明,,所提方法在單個數(shù)據(jù)集上的識別精度最高可達97.96%,并在其他4個圖像數(shù)據(jù)集上進行了測試泛化,,泛化精度下降幅度小于5個百分點,。

    Abstract:

    To solve the problem of weak generalization caused by diversity of source of shrimp samples, a novel shrimp features difference model based on shannon information theory was proposed. The model was actually a recognition framework, calculating hyper-parameters based on deep convolutional neural network (DCNN) using entropy reduction rule with multi-source datasets. This rule can clear up the special information entropy from the random input to regular output, breaking the data types changing from three dimensional input to one-dimensional output, realizing dimensionality reduction of shrimp image reducing from high dimension space to low dimensional space. Thus, the DCNN adaptive optimization strategies can be acquired to improve the generlization effectiveness of recognizing diseased shrimp from multiple sources. The experimental results showed that the proposed method in a single dataset can achieve highest accuracy of 97.96%. The generalization experiment was also tested through other four shrimp image datasets, and the generalization precision falling scope was no more than 5 percentage points.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉子豪,張素蘭,賈小軍,楊俊,張文,徐志玲.基于自適應(yīng)卷積神經(jīng)網(wǎng)絡(luò)的染病蝦識別方法[J].農(nóng)業(yè)機械學報,2022,53(5):246-256. LIU Zihao, ZHANG Sulan, JIA Xiaojun, YANG Jun, ZHANG Wen, XU Zhiling. Diseased Shrimp Identification Method Based on Adaptive Convolutional Neural Networks[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):246-256.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期:
文章二維碼