ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Faster R-CNN網(wǎng)絡(luò)的茶葉嫩芽檢測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

重慶市技術(shù)創(chuàng)新與應(yīng)用發(fā)展專項(cstc2019jscx-gksbX0092)


Tea Bud Detection Based on Faster R-CNN Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為有效識別茶葉嫩芽提高機械采摘精度、規(guī)劃采摘路線以避免傷害茶樹,,針對傳統(tǒng)目標(biāo)檢測算法在復(fù)雜背景下檢測精度低,、魯棒性差、速度慢等問題,,探索了基于Faster R-CNN目標(biāo)檢測算法在復(fù)雜背景下茶葉嫩芽檢測方面的應(yīng)用,。首先對采集圖像分別進行等分裁切、標(biāo)簽制作,、數(shù)據(jù)增強等處理,,制作VOC2007數(shù)據(jù)集;其次在計算機上搭建深度學(xué)習(xí)環(huán)境,,調(diào)整參數(shù)進行網(wǎng)絡(luò)模型訓(xùn)練,;最后對已訓(xùn)練模型進行測試,,評價已訓(xùn)練模型的性能,并同時考慮了Faster R-CNN模型對于嫩芽類型(單芽和一芽一葉/二葉)的檢測精度,。結(jié)果表明,,當(dāng)不區(qū)分茶葉嫩芽類型時,平均準(zhǔn)確度(AP)為54%,,均方根誤差(RMSE)為3.32,;當(dāng)區(qū)分茶葉嫩芽類型時,單芽和一芽一葉/二葉的AP為22%和75%,,RMSE為2.84,;另外剔除單芽后,一芽一葉/二葉的AP為76%,,RMSE為2.19,。通過對比基于顏色特征和閾值分割的茶葉嫩芽識別算法(傳統(tǒng)目標(biāo)檢測算法),表明深度學(xué)習(xí)目標(biāo)檢測算法在檢測精度和速度上明顯優(yōu)于傳統(tǒng)目標(biāo)檢測算法(RMSE為5.47),,可以較好地識別復(fù)雜背景下的茶葉嫩芽,。

    Abstract:

    Effective detection of tea buds is an important prerequisite for improving the precision of mechanical picking and planning the picking route to avoid harming tea plants. Considering the problems of low detection accuracy, poor robustness and slow speed of traditional target detection algorithm in complex background, Faster R-CNN was applied to recognize tea bud in complex background. Firstly, collected pictures were processed by equal cutting, label making and data enhancement to make VOC2007 dataset. The deep learning model on detecting tea bud types (single bud and one bud with one leaf/two leaves) was trained after setting up the environment and adjusting the model parameters, and the trained model was evaluated. The results showed that the average precision (AP) was 54%, and the root mean square error (RMSE) were 3.32 when the tea bud type was not distinguished. When distinguishing tea bud types, the AP of single bud and one bud with one leaf/two leaves were 22% and 75%, with RMSE of 2.84. When single bud was removed, the AP of one bud with one leaf/two leaves was 76%, with RMSE of 2.19. Compared with tea bud detection algorithm based on excess green and image binarization (traditional target detection algorithm), the deep learning target detection algorithm was superior to traditional target detection algorithm, with RMSE of 5.47, in accuracy and speed, especially under complex background. Deep learning algorithm demonstrated an important application prospect in realizing tea bud detection and automatic picking in intelligent tea garden image real-time detection system.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱紅春,李旭,孟煬,楊海濱,徐澤,李振海.基于Faster R-CNN網(wǎng)絡(luò)的茶葉嫩芽檢測[J].農(nóng)業(yè)機械學(xué)報,2022,53(5):217-224. ZHU Hongchun, LI Xu, MENG Yang, YANG Haibin, XU Ze, LI Zhenh. Tea Bud Detection Based on Faster R-CNN Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):217-224.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-10-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期:
文章二維碼