ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

農(nóng)業(yè)文本語義理解技術(shù)綜述
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2019YFD1101105),、財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項目(CARS-23-D07)和北京市農(nóng)林科學(xué)院青年科研基金項目(QNJJ202030)


Review of Semantic Analysis Techniques of Agricultural Texts
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著互聯(lián)網(wǎng)和人工智能技術(shù)的發(fā)展,,農(nóng)業(yè)知識智能化服務(wù)逐漸承擔起為農(nóng)業(yè)生產(chǎn)管理提供有效技術(shù)指導(dǎo)的作用。本文對農(nóng)業(yè)文本語義理解中的關(guān)鍵技術(shù)及應(yīng)用進行綜述,。首先按照自然語言處理中基于規(guī)則,、機器學(xué)習和深度學(xué)習的語義處理方法介紹其在農(nóng)業(yè)領(lǐng)域應(yīng)用的進展;然后闡述了針對農(nóng)業(yè)知識特性的語義分析方法,,涵蓋農(nóng)業(yè)文本分析主要過程的儲存,、表達,、計算,包括農(nóng)業(yè)知識圖譜的知識抽取,、融合,、表示、推理,,TF-IDF,、Word2Vec、BERT等農(nóng)業(yè)文本表示模型與CNN,、RNN,、Attention等分類模型;闡述了可用于分詞,、向量化表達等的通用語料庫和農(nóng)業(yè)領(lǐng)域常用語料庫,;從農(nóng)業(yè)智能問答、農(nóng)業(yè)語義檢索,、農(nóng)業(yè)智能管理決策方面闡述語義理解在農(nóng)業(yè)領(lǐng)域中的應(yīng)用,;最后從農(nóng)業(yè)語料庫標準化構(gòu)建、語義理解模型復(fù)雜度,、多模態(tài)語義處理,、多區(qū)域多語言語義理解等方面對農(nóng)業(yè)文本的語義理解研究趨勢進行了展望。

    Abstract:

    With the development of Internet and artificial intelligence technology, agricultural knowledge intelligent services have gradually assumed the role of providing effective technical guidance for agricultural production management, especially during the epidemic. The key technologies and applications in the semantic understanding of agricultural knowledge service texts were reviewed. Firstly, its progress in agriculture was introduced according to the semantic processing methods based on rules, machine learning and deep learning in natural language processing. Then, the semantic analysis method for the characteristics of agricultural knowledge was introduced, covering the storage, expression and calculation of the main process of agricultural text analysis, including knowledge extraction, knowledge fusion, knowledge representation and knowledge inference of agricultural knowledge graph. The representation model of agricultural text such as TF-IDF, Word2Vec and BERT and classification models such as CNN, RNN and Attention were presented. Then the common corpus was described. The application of semantic understanding in agriculture from the aspects of agricultural intelligent question answering, agricultural semantic retrieval and agricultural intelligent management decision as well were introduced. Finally, the research trend of agricultural text semantic understanding was prospected from the aspects of standardization construction of agricultural corpus, complexity of semantic understanding model, multi-modal semantic processing, multi-region and multi-language semantic understanding.

    參考文獻
    相似文獻
    引證文獻
引用本文

吳華瑞,郭威,鄧穎,王郝日欽,韓笑,黃素芳.農(nóng)業(yè)文本語義理解技術(shù)綜述[J].農(nóng)業(yè)機械學(xué)報,2022,53(5):1-16. WU Huarui, GUO Wei, DENG Ying, WANG Haoriqin, HAN Xiao, HUANG Sufang. Review of Semantic Analysis Techniques of Agricultural Texts[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):1-16.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期:
文章二維碼