ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于K-medoids和LSTM的冷鏈運輸環(huán)境預(yù)測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFD0701002)


Cold Chain Transportation Environment Prediction Method Based on K-medoids and LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前冷鏈儲運環(huán)境狀態(tài)僅通過當前環(huán)境監(jiān)測數(shù)據(jù)進行判斷,未能對環(huán)境變化趨勢做出預(yù)判,,無法很好地滿足冷鏈儲運環(huán)境性能評估的需求,,提出了一種基于K中心點算法(K-medoids)和長短時記憶網(wǎng)絡(luò)(LSTM)相結(jié)合的冷藏車廂溫濕度多步預(yù)測方法。將冷藏車廂內(nèi)歷史溫濕度數(shù)據(jù)、采集節(jié)點分布特征按照時間序列作為輸入,,采用K-medoids對其進行數(shù)據(jù)融合,,然后將融合后的數(shù)據(jù)按照時間序列輸入LSTM網(wǎng)絡(luò)進行溫濕度預(yù)測。將該預(yù)測方法應(yīng)用于舟山興業(yè)集團的冷藏車內(nèi)進行溫濕度預(yù)測驗證,。試驗結(jié)果表明:該預(yù)測方法對于冷藏車廂內(nèi)溫度預(yù)測的均方根誤差,、平均絕對誤差、平均絕對百分比誤差分別為0.3438℃,、0.2730℃、1.51%,;對于冷藏車廂內(nèi)相對濕度均方根誤差,、平均絕對誤差、平均絕對百分比誤差分別為2.5619%,、1.9956%,、3.53%,相比于BP神經(jīng)網(wǎng)絡(luò)等其他淺層模型,,該模型具有較好的預(yù)測精度和泛化能力,,能夠滿足冷鏈儲運環(huán)境預(yù)測的實際需求,可為冷鏈運輸環(huán)境精細化管理和調(diào)控提供策略支持,。

    Abstract:

    Among the many environmental factors in the cold chain storage and transportation environment, the temperature and humidity in the cabin are the key factors, and they have characteristics such as nonlinearity and strong coupling. At the same time, the acquired data has noise interference, In order to solve the traditional single-point forecast cannot meet the needs of cold chain storage and transportation environmental performance evaluation, a multi-step prediction method for refrigerated compartment temperature and humidity based on the combination of K-medoids and long short-term memory network (LSTM) was proposed. The historical temperature and humidity data in the refrigerated compartment and the distribution characteristics of the collection nodes were taken as input according to the time series, and K-medoids were used for data fusion, and then the fused data was input into the LSTM network according to the time series for temperature and humidity prediction. The prediction method was applied to the prediction of temperature and humidity in the refrigerated vehicle of Zhoushan Xingye Group. The test results showed that the RMSE of the prediction method for the temperature in the refrigerated vehicle was 0.3438℃, the MAE was 0.2730℃, and the MAPE was 1.51%; the RMSE of the humidity in the refrigerated compartment was 2.5619%, the MAE was 1.9956%, and the MAPE was 3.53%; compared with K-medoids-BP, K-medoids-RBF, K-medoids-Elman neural network model, all showed that the proposed model had higher prediction accuracy, and can provide strategic support for the fine management and regulation of the cold chain transportation environment.

    參考文獻
    相似文獻
    引證文獻
引用本文

苑嚴偉,孫國慶,劉陽春,王猛,趙博,汪鳳珠.基于K-medoids和LSTM的冷鏈運輸環(huán)境預(yù)測方法[J].農(nóng)業(yè)機械學報,2022,53(4):322-329. YUAN Yanwei, SUN Guoqing, LIU Yangchun, WANG Meng, ZHAO Bo, WANG Fengzhu. Cold Chain Transportation Environment Prediction Method Based on K-medoids and LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):322-329.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-30
  • 出版日期:
文章二維碼