ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕型調(diào)控網(wǎng)絡(luò)的下繭機(jī)器視覺(jué)實(shí)時(shí)檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(62061022,、62171206,、61761024)


Machine Vision Real Time Detection of Inferior Cocoons Based on Lightweight Manipulation Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)蠶繭加工過(guò)程中人工目測(cè)下繭效率低的問(wèn)題,,采用機(jī)器視覺(jué)的檢測(cè)方法代替人工檢測(cè)下繭,。首先,,根據(jù)圖像采集系統(tǒng)成像的景深為線陣掃描相機(jī)選擇合適的拍攝距離,并通過(guò)采樣頻率的計(jì)算進(jìn)一步配置圖像采集系統(tǒng)的參數(shù),;然后,,用采集得到的線陣圖像合成面陣圖像構(gòu)建下繭檢測(cè)數(shù)據(jù)集;最后,,以YOLO v4目標(biāo)檢測(cè)模型為基礎(chǔ)模型設(shè)計(jì)出下繭實(shí)時(shí)檢測(cè)模型(Inferior cocoons net,,ICNet)。該模型通過(guò)K-means算法對(duì)下繭檢測(cè)數(shù)據(jù)集聚類分析來(lái)預(yù)置候選框參數(shù)提升模型精度,;采用模型深度調(diào)控的方法進(jìn)行模型壓縮,,以降低模型權(quán)重所占儲(chǔ)存空間,提升模型速度,;設(shè)計(jì)輕量級(jí)卷積模塊構(gòu)建輕量級(jí)特征提取網(wǎng)絡(luò)進(jìn)一步提升模型的速度,。實(shí)驗(yàn)結(jié)果表明,本文設(shè)計(jì)的ICNet下繭實(shí)時(shí)檢測(cè)模型較原YOLO v4基礎(chǔ)模型平均檢測(cè)精度提升1.87個(gè)百分點(diǎn),,達(dá)到95.55%,模型權(quán)重所占儲(chǔ)存空間壓縮40.82%,,降為145.00MB,,平均檢測(cè)速度提升91.65%,達(dá)到49.37幀/s,。

    Abstract:

    Aiming at the low efficiency in the detection of inferior cocoons during the cocoons processing due to manual visual inspection, a method based on machine vision was adopted to detect inferior cocoons. Firstly, according to the depth of field of image acquisition system, appropriate shooting distance for the line scan camera was selected, and further the parameters of the image acquisition system were configured based on the sampling frequency. Secondly, the inferior cocoons detection data set was constructed based on the area array images obtained by synthesizing the linear array images. Finally, a inferior cocoons real time detection model (inferior cocoons net, ICNet) was designed based on YOLO v4 target detection model. The model used the K-means algorithm to perform cluster analysis on the data set of inferior cocoons to preset the candidate anchor parameters and improve the model accuracy. By adopting the method of model depth manipulation, the model was compressed to achieve lightweight and fast detection speed. In addition, the lightweight convolution module was designed for a lightweight feature extraction network to further improve the speed of the model. Compared with the original YOLO v4 basic model, experimental results showed that the mean average precision of ICNet inferior cocoons real time detection model was improved by 1.87 percentage points to 95.55%, the storage space occupied by the model weight was compressed by 40.82% to 145.00MB, and the average detection speed was improved by 91.65% to 49.37 frames/s.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張印輝,楊宏寬,朱守業(yè),何自芬.基于輕型調(diào)控網(wǎng)絡(luò)的下繭機(jī)器視覺(jué)實(shí)時(shí)檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(4):261-270. ZHANG Yinhui, YANG Hongkuan, ZHU Shouye, HE Zifen. Machine Vision Real Time Detection of Inferior Cocoons Based on Lightweight Manipulation Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):261-270.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-10-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期:
文章二維碼