ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多尺度融合模塊和特征增強的雜草檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

陜西省重點研發(fā)計劃項目(2021GY-022),、西安市科技計劃項目(2019216514GXRC001CG002-GXYD1.7)和國家留學基金項目(201708615011)


Weed Detection Based on Multi-scale Fusion Module and Feature Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對單步多框檢測器(Single shot multibox detector,,SSD)網絡模型參數多,、小目標檢測效果差,、作物與雜草檢測精度低等問題,提出一種基于多尺度融合模塊和特征增強的雜草檢測方法,。首先將輕量網絡MobileNet作為SSD模型的特征提取網絡,,并設計了一種多尺度融合模塊,將淺層特征圖先通過通道注意力機制增強圖像中的關鍵信息,,再將特征圖經過不同膨脹系數的擴張卷積擴大感受野,,最后將兩條分支進行特征融合,對于檢測小目標的淺層特征圖,,在包含較多小目標細節(jié)信息的同時,還包含豐富的語義信息,。在此基礎上對輸出的6個特征圖經過通道注意力機制進行特征增強,。實驗結果表明,本文提出的基于多尺度融合模塊和特征增強的雜草檢測模型,,在自然環(huán)境下甜菜與雜草圖像數據集中,,平均檢測精度可達88.84%,較標準SSD模型提高了3.23個百分點,,參數量減少57.09%,,檢測速度提高88.44%,同時模型對小目標作物與雜草以及葉片交疊情況的檢測能力均有提高,。

    Abstract:

    Aiming at the problems of single shot multibox detector (SSD) network model with large parameters, poor detection of small targets and low detection accuracy of crops and weeds, a weed detection method based on multi-scale fusion module and feature enhancement was proposed. Firstly, MobileNet, a lightweight network, was used as the feature extraction network of SSD model to reduce the amount of model parameters and improve the speed of model feature extraction. And a multi-scale fusion module was designed to enhance the key information in the shallow feature map by channel attention mechanism, and then the receptive field was expanded by dilated convolution with different expansion rates. Finally, the two branches were fused, so that the shallow feature map used to detect small targets can contain rich semantic information while containing more detailed information of small targets. On this basis, the output six feature maps were feature enhanced by the channel attention mechanism to enhance the key features in the images and make the extracted features more directional, thus improving the detection accuracy of the model for crops and weeds. The experimental results showed that the weed detection model based on multi-scale fusion module and feature enhancement proposed can achieve an average detection accuracy of 8884% in the image data set of sugar beet and weeds in the natural environment, which was 3.23 percentage points better than that of the standard SSD model, 57.09% less parameters, and 88.44% faster detection speed, while the model's ability to detect small-scale crops and weeds, and leaf overlap were all improved.

    參考文獻
    相似文獻
    引證文獻
引用本文

亢潔,劉港,郭國法.基于多尺度融合模塊和特征增強的雜草檢測方法[J].農業(yè)機械學報,2022,53(4):254-260. KANG Jie, LIU Gang, GUO Guofa. Weed Detection Based on Multi-scale Fusion Module and Feature Enhancement[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):254-260.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-05-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-18
  • 出版日期:
文章二維碼