ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO v5-MDC的重度粘連小麥籽粒檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1002401)


Detection Method of Severe Adhesive Wheat Grain Based on YOLO v5-MDC Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    小麥籽粒檢測(cè)在千粒質(zhì)量計(jì)算及作物育種方面有著重要應(yīng)用,,重度粘連籽粒的有效檢測(cè)是其關(guān)鍵。本研究設(shè)計(jì)了一種YOLO v5-MDC的輕量型網(wǎng)絡(luò)用于重度粘連小麥籽粒檢測(cè),。該網(wǎng)絡(luò)在YOLO v5s檢測(cè)網(wǎng)絡(luò)的基礎(chǔ)上,,用混合深度可分離卷積(Mixed depthwise convolutional, MDC)模塊進(jìn)行改進(jìn),同時(shí)將MDC模塊與壓縮激勵(lì)(Squeeze and excitation, SE)模塊相結(jié)合,,以達(dá)到在基本不損失模型精度的前提下減少模型參數(shù)的目的,。YOLO v5-MDC網(wǎng)絡(luò)將YOLO v5s特征提取網(wǎng)絡(luò)骨干部分的卷積、歸一化,、激活函數(shù)(Convolution, Batch normal, Hardswish, CBH)模塊替換為MDC模塊,,減少了模型的參數(shù),經(jīng)過(guò)500次迭代訓(xùn)練,,模型的精確率P為93.15%,,召回率R為99.96%,平均精度均值(mAP)為99.46%,。根據(jù)模型在測(cè)試集上的檢測(cè)效果,,本研究探究了訓(xùn)練次數(shù)、不同光源與不同拍攝距離對(duì)模型檢測(cè)結(jié)果的影響,,統(tǒng)計(jì)結(jié)果表明,,在綠色光源下模型檢測(cè)精確率最高,為98.00%,,在5cm拍攝高度下圖像的檢測(cè)精確率最高,,為98.60%。同時(shí)本研究在50次迭代下與YOLO v5s,、RetinaNet,、YOLO v4網(wǎng)絡(luò)模型的檢測(cè)效果進(jìn)行了對(duì)比,結(jié)果表明,YOLO v5-MDC的mAP為99.40%,,比YOLO v5s模型降低了0.06個(gè)百分點(diǎn),,但模型所占存儲(chǔ)空間最小,僅為13.4MB,,比YOLO v5s模型減少了0.6MB,,對(duì)于單幅圖像的最大檢測(cè)時(shí)間為0.08s,,平均檢測(cè)時(shí)間為0.03s,。綜上,本研究所設(shè)計(jì)模型能有效實(shí)現(xiàn)重度粘連小麥籽粒的檢測(cè),,同時(shí)模型檢測(cè)效率高,,所占存儲(chǔ)小,可為小麥籽粒檢測(cè)嵌入式設(shè)備研發(fā)提供技術(shù)支持,。

    Abstract:

    Wheat grain detection has important applications in the calculation of thousand grain weight and crop breeding, and the effective detection of heavily adhesive grains is the key issue should be solved. A lightweight network called YOLO v5-MDC was designed for the detection of heavily adhesive wheat grains to provide technical support for the development of mobile terminals. The YOLO v5s detection network was chosen and the mixed depthwise convolutional (MDC) module was carried out to improve it. At the same time, the MDC module combined with a squeeze and excitation(SE) module was applied to achieve the purpose of reducing model parameters without losing the accuracy of the model. The YOLO v5-MDC network replaced the convolution, batch normal, Hardswish (CBH) modules of the backbone of the YOLO v5s feature extraction network with the MDC module, reducing the model parameters. After 500 iterations of training, the accuracy of the model reached 93.15%, the recall rate reached 99.96%, and the average accuracy rate (mAP) reached 99.46%. According to the detection effect of the model on the test set, the impact of training times, different light sources and different shooting distances on the model’s detection effect was explored. The statistical results showed that the model detection accuracy rate was the highest under the green light source, and the image detection accuracy rate was the highest under the shooting height of 5cm. The research results were also compared with YOLO v5s, RetinaNet and YOLO v4 network models in 50 iterations. The results showed that the mAP of YOLO v5-MDC model was 99.40%, which was 0.06 percentage points lower than that of the original YOLO v5s model, but the model occupied the smallest storage space, with a result of only 13.4MB, which was 0.6 MB less than the YOLO v5s model. The average detection time for single image was 0.03s, and the maximum detection time was 0.08s. In summary, the designed model can effectively realize the detection of heavily adhesive wheat grains. At the same time, the model had high detection efficiency and small storage space, which can provide necessary technical support for the development of embedded equipment for wheat grain detection.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

宋懷波,王云飛,段援朝,宋磊,韓夢(mèng)璇.基于YOLO v5-MDC的重度粘連小麥籽粒檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(4):245-253. SONG Huaibo, WANG Yunfei, DUAN Yuanchao, SONG Lei, HAN Mengxuan. Detection Method of Severe Adhesive Wheat Grain Based on YOLO v5-MDC Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):245-253.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-04-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-07-06
  • 出版日期:
文章二維碼