ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于弱監(jiān)督語(yǔ)義分割的燈盞花無(wú)人機(jī)遙感種植信息提取
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目 (41961039)和云南省基礎(chǔ)研究計(jì)劃項(xiàng)目 (202101AT070102、202201AT070164)


Extraction of Erigeron breviscapus Planting Information by Unmanned Aerial Vehicle Remote Sensing Based on Weakly Supervised Semantic Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為及時(shí)掌握種植空間信息,,保護(hù)和利用燈盞花,,針對(duì)燈盞花壟間邊界模糊,精細(xì)標(biāo)記訓(xùn)練數(shù)據(jù)集獲取困難問(wèn)題,,提出一種基于結(jié)合RGB波段最大差異法和弱監(jiān)督語(yǔ)義分割的無(wú)人機(jī)遙感燈盞花種植信息提取方法,。首先,對(duì)燈盞花進(jìn)行邊框級(jí)標(biāo)記,,制作弱標(biāo)記數(shù)據(jù)集,,減少標(biāo)記時(shí)間成本;然后采用輕量級(jí)U-Net網(wǎng)絡(luò)對(duì)弱標(biāo)記數(shù)據(jù)集進(jìn)行弱監(jiān)督語(yǔ)義分割,,實(shí)現(xiàn)燈盞花粗提??;最后,,采用RGB波段最大差異法去除粗提取結(jié)果中的非燈盞花,實(shí)現(xiàn)燈盞花種植區(qū)精細(xì)提取,。實(shí)驗(yàn)結(jié)果表明,,提出方法在選取的3個(gè)燈盞花場(chǎng)景中交并比(Intersection-over-union, IoU)分別為90.55%、90.74%,、86.63%,,精度均高于面向?qū)ο蠓诸惙ê妥畲笏迫环ǎ⑼ㄟ^(guò)消融實(shí)驗(yàn)驗(yàn)證了方法的有效性,。

    Abstract:

    In order to get spatial information of planting in time, protect and utilize Erigeron breviscapus, the fuzzy inter-ridge boundary and the difficulty in obtaining training data set of fine markers were solved. An unmanned aerial vehicle remote sensing planting information extraction method for Erigeron breviscapus based on the combination of RGB band maximum difference method and weakly supervised semantic segmentation was proposed. Firstly, Erigeron breviscapus was labeled at border level in order to make weakly labeled data set to reduce labeling time cost. Then, a lightweight U-Net network was used for weakly supervised semantic segmentation of the weakly labeled data set to achieve rough extraction of Erigeron breviscapus. Finally, the RGB band maximum difference method was used to remove the nonErigeron breviscapus in the rough extraction results to achieve the fine extraction of Erigeron breviscapus growing area. The experimental results showed that the proposed method in IoU was 90.55%, 90.74% and 86.63%, respectively, in three selected Erigeron breviscapus scenes, and the accuracy was higher than object-oriented classification method and maximum likelihood method. The effectiveness of the method was verified by ablation experiments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃亮,吳春燕,李小祥,楊威,姚皖路.基于弱監(jiān)督語(yǔ)義分割的燈盞花無(wú)人機(jī)遙感種植信息提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(4):157-163. HUANG Liang, WU Chunyan, LI Xiaoxiang, YANG Wei, YAO Wanlu. Extraction of Erigeron breviscapus Planting Information by Unmanned Aerial Vehicle Remote Sensing Based on Weakly Supervised Semantic Segmentation[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):157-163.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-28
  • 出版日期:
文章二維碼